
Reference: Java Server Pages (Wrox), Web Programming with Java (O’Reilly)

Lecture 19 – JSP
Course: Web Engineering

Instructor: Wasim Ahmad Khan

Getting started with JSP by Examples

1. Introduction

JavaServer Page (JSP) is Java's answer to the popular Microsoft's Active Server Pages (ASP). JSP, like

ASP, provides a simplified and fast mean to generate dynamic web contents. It allows you to

mix static HTML with dynamically generated HTML - in the way that the business logic and

the presentation are well separated.

The advantages of JSP are:

1. Separation of static and dynamic contents : JSP enables the separation

of static contents from dynamic contents. The dynamic contents are generated via

programming logic and inserted into the static template. This greatly simplifies the creation and

maintenance of web contents.

2. Reuse of components and tag libraries: The dynamic contents can be provided by

reusable components such as JavaBean, Enterprise JavaBean (EJB) and tag libraries - you do not

have to re-inventing the wheels.

3. Java's power and portability

JSPs are Internally Compiled into Java Servlets

That is to say, anything that can be done using JSPs can also be accomplished using Java servlets.

However, it is important to note that servlets and JSPs are complementary technologies, NOT

replacement of each other. Servlet can be viewed as "HTML inside Java", which is better for

implementing business logic - as it is Java dominant. JSP, on the other hand, is "Java inside HTML",

which is superior for creating presentation - as it is HTML dominant. In a typical Model-View-

Control (MVC) application, servlets are often used for the Controller (C), which involves complex

programming logic. JSPs are often used for the View (V), which mainly deals with presentation. The

Model (M) is usually implemented using JavaBean or EJB.

Apache Tomcat Server

JSPs, like servlets, are server-side programs run inside a HTTP server. To support JSP/servlet, a Java-

capable HTTP server is required. Tomcat Server (@ http://tomcat.apache.org) is the official reference

implementation (RI) for Java servlet and JSP, provided free by Apache (@ http://www.apache.org) -

an open-source software foundation.

2. First JSP Example - "Java inside HTML"

Let's begin with a simple JSP example. We shall use the webapp called "hello" that we have created

in our earlier exercise. Use a programming text editor to enter the following HTML/JSP codes and save

as "first.jsp" (the file type of ".jsp" is mandatory) in your webapp (web context) home directory

(i.e., "webapps\hello".

1

2

<html>

<head><title>First JSP</title></head>

http://tomcat.apache.org/
http://www.apache.org/

Reference: Java Server Pages (Wrox), Web Programming with Java (O’Reilly)

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

<body>

 <%

 double num = Math.random();

 if (num > 0.95) {

 %>

 <h2>You'll have a luck day!</h2><p>(<%= num %>)</p>

 <%

 } else {

 %>

 <h2>Well, life goes on ... </h2><p>(<%= num %>)</p>

 <%

 }

 %>

 <a href="<%= request.getRequestURI() %>"><h3>Try Again</h3>

</body>

</html>

To execute the JSP script: Simply start your Tomcat server and use a browser to issue an URL to browse

the JSP page (i.e., http://localhost:8080/hello/first.jsp).

From your browser, choose the "View Source" option to check the response message. It should be

either of the followings depending on the random number generated.

<html>

<h2>You'll have a luck day!</h2>

<p>(0.987)</p>

<h3>Try Again</h3>

</html>

<html>

<h2> Well, life goes on ... </h2>

<p>(0.501)</p>

<h3>Try Again</h3>

</html>

It is important to note that the client is not able to "view" the original JSP script (otherwise, you may

have security exposure), but merely the result generated by the script.

Explanations

1. A JSP script is a regular HTML page containing Java programs. Recall that JSP is "Java inside

HTML" (whereas servlet is "HTML inside Java"). The Java statements are enclosed by <% ...

%> (called JSP scriptlet) or <%= ... %> (called JSP expression).

2. JSP Scriptlet <% ... %> is used to include Java statements.

3. JSP Expression <%= ... %> is used to evaluate a single Java expression and display its result.

Reference: Java Server Pages (Wrox), Web Programming with Java (O’Reilly)

4. The method request.getRequestURI() is used to retrieve the URL of the current page. This is

used in the anchor tag <a> for refreshing the page to obtain another random number.

Behind the Scene

When a JSP is first accessed, Tomcat converts the JSP into a servlet; compile the servlet, and execute the

servlet. Check out the generated servlet for "first.jsp", and study the JSP-to-servlet conversion. Look

under Tomcat's "work\Catalina\localhost\hello" for "first_jsp.java".

The relevant part of the generated servlet is extracted as follows (with some simplifications):

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

out.write("<html>\r\n ");

double num = Math.random();

if (num > 0.95) {

 out.write("<h2>You will have a luck day!");

 out.write("</h2><p>(");

 out.print(num);

 out.write(")</p>\r\n");

} else {

 out.write("\r\n ");

 out.write("<h2>Well, life goes on ... ");

 out.write("</h2><p>(");

 out.print(num);

 out.write(")</p>\r\n ");

}

out.write("<a href=\"");

out.print(request.getRequestURI());

out.write("\">");

out.write("<h3>Try Again</h3>\r\n");

out.write("</html>\r\n");

Explanation

1. The HTML statements are written out as part of the response via out.write(), as "it is".

2. The JSP scriptlets <% ... %> are kept, as "it is", in the converted servlet as the program logic.

3. The JSP expressions <%= ... %> are placed inside a out.print(). Hence, the expression will be

evaluated, and the result of the evaluation written out as part of the response message.

Compare the JSP script and the internally generated servlet, you shall understand that servlet is "HTML

inside Java", whereas JSP is "Java inside HTML".

Subsequent accesses to the same JSP will be much faster, because they will be re-directed to the

converted and compiled servlet directly (no JSP-to-servlet conversion and servlet compilation needed

again), unless the JSP has been modified.

3. Revisit Java Servlets

A typical Java servlet (as shown below) contains three kinds of methods: init(), destroy(), and one

or more service() methods such as doGet() and doPost(). init() runs when the servlet is

loaded.destroy() runs when the servlet is unloaded. service() runs once per HTTP request.

The service() methods takes two arguments: request and response, corresponding to the HTTP

Reference: Java Server Pages (Wrox), Web Programming with Java (O’Reilly)

request and response messages respectively. A PrintWriter called out is created for writing out the

response to the network.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ...Servlet extends HttpServlet {

 // Runs when the servlet is loaded onto the server.

 public void init() {

 }

 // Runs on a thread whenever there is HTTP GET request

 // Take 2 arguments, corresponding to HTTP request and response

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

 // Set the MIME type for the response message

 response.setContentType("text/html");

 // Write to network

 PrintWriter out = response.getWriter();

 // Your servlet's logic here

 out.println("<html>");

 out.println(......);

 out.println("</html>");

 }

 // Runs as a thread whenever there is HTTP POST request

 public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

 // do the same thing as HTTP GET request

 doGet(request, response);

 }

 // Runs when the servlet is unloaded from the server.

 public void destroy() {

 }

 // Other instance variables and methods

 }

Java servlet produces HTML codes by calling out.print() methods. You have to hardcode all the

HTML tags (and cannot use any WYSIWYG web authoring tools). Any change to the web page's

presentation (such as background color and font size) requires re-coding and re-compilation of servlet

program. Servlet, in a nutshell, is "HTML inside Java", whereas JSP is "Java inside HTML".

Reference: Java Server Pages (Wrox), Web Programming with Java (O’Reilly)

4. Second JSP example - Echoing HTML Request

Parameters

Enter the following JSP script and save as "echo.jsp" in your webapp's root directory.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

<html>

<head>

 <title>Echoing HTML Request Parameters</title>

</head>

<body>

 <h3>Choose an author:</h3>

 <form method="get">

 <input type="checkbox" name="author" value="Tan Ah Teck">Tan

 <input type="checkbox" name="author" value="Mohd Ali">Ali

 <input type="checkbox" name="author" value="Kumar">Kumar

 <input type="submit" value="Query">

 </form>

 <%

 String[] authors = request.getParameterValues("author");

 if (authors != null) {

 %>

 <h3>You have selected author(s):</h3>

 <%

 for (int i = 0; i < authors.length; ++i) {

 %>

 <%= authors[i] %>

 <%

 }

 %>

 <a href="<%= request.getRequestURI() %>">BACK

 <%

 }

 %>

</body>

</html>

Browse the JSP page created and study the generated servlet.

Explanations

1. This HTML page has a form with 3 checkboxes. The "name=value" pair of the checkboxes is

"author=so_and_so". No "action" attribute is specified, the default "action" is the current page

(i.e. the query will be sent to the same page).

2. The JSP scriptlet checks if the query parameter "author" exists to decide whether to dynamically

generate the enclosed codes. "author" parameter is absent when the page is first

requested. Once the client fills in the form (by checking the boxes) and submits the form,

Reference: Java Server Pages (Wrox), Web Programming with Java (O’Reilly)

"author" will be present in the HTTP request, and submitted to the same page for processing

(with the default <form>’s "action" attribute).

3. The request.getParameterValues() is used to retrieve all the values of the query parameter.

The values are echoed back using an unordered list.

5. JSP Scripting Elements

JSP provides the following scripting elements:

 JSP Comment <%-- comments -->

 JSP Expression <%= Java Expression %>

 JSP Scriptlet <% Java Statement(s) %>

 JSP Directive <%@ page|include ... %>

To simplify the access of the HTTP request and response messages, JSP has pre-defined the following

variables:

 request: corresponds to the HTTP request message.

 response: corresponds to the HTTP response message.

 out: corresponds to the HTTP response message’s output stream.

 others such as session, page, application, pageContext, which are outside the scope of this

tutorial.

5.1 JSP comment <%-- comments --%>

JSP comments <%-- comments --%> are ignored by the JSP engine. For example,

<%-- anything but a closing tag here will be ignored -->

Note that HTML comment is <!-- comments -->. JSP expression within the HTML comment will be

evaluated. For example,

<!-- HTML comments here <%= Math.random() %> more comments -->

5.2 JSP Expression <%= Java Expression %>

JSP Expression can be used to insert a single Java expression directly into the response message. This

expression will be placed inside a out.print() method. Hence, the expression will be evaluated and

printed out as part of the response message. Any valid Java expression can be used. There is no semi-

colon at the end of the expression. For examples:

<p>The square root of 5 is <%= Math.sqrt(5) %></p>

<h5><%= item[10] %></h5>

<p>Current time is: <%= new java.util.Date() %></p>

The above JSP expressions will be converted to:

out.write("<p>The square root of 5 is ");

out.print(Math.sqrt(5));

out.write("</p>");

out.write("<h5>");

Reference: Java Server Pages (Wrox), Web Programming with Java (O’Reilly)

out.print(item[10]);

out.write("</h5>");

out.write("<p>Current time is: ");

out.print(new java.util.Date());

out.write("</p>");

You can use the pre-defined variables, such as request, in the expressions. For examples:

<p>You have choose author <%= request.getParameter("author") %></p>

<%= request.getRequestURI() %>

<%= request.getHeader("Host") %>

5.3 JSP Scriptlet <% Java statement(s) %>

JSP scriptlets allow you to do more complex operations than inserting a single Java expression (with

the JSP expression). JSP scriptlets let you insert an arbitrary sequence of valid Java statement(s) into

theservice() method of the converted servlet. All the Java statements in a scriptlet are to be

terminated with a semi-colon. For example:

<%

 String author = request.getParameter("author");

 if (author != null && !author.equals(""))) {

%>

 <p>You have choose author <%= author %></p>

<%

 }

%>

In the converted servlet, the above will be inserted into the service() method as follows:

String author = request.getParameter("author");

if (author != null && !author.equals(""))) {

 out.write("<p>You have choose author ");

 out.print(author);

 out.write("</p>");

}

Notice that the Java codes inside a scriptlet are inserted exactly as they are written, and used as the

programming logic. The HTML codes are passed to an out.write() method and written out as part

of the response message.

5.4 JSP Directive <%@ page|include ... %>

JSP directives provide instructions to the JSP engine. The syntax of the JSP directive is:

<%@ directive_name

 attribute1="value1"

 attribute2="value2"

 attributeN="valueN" %>

Reference: Java Server Pages (Wrox), Web Programming with Java (O’Reilly)

JSP page Directive

The "page" directive lets you import classes and customize the page properties. For examples,

<%-- import package java.sql.* -->

<%@ page import="java.sql.*" %>

<%-- Set the output MIME type -->

<%@ page contentType="image/gif" %>

<%-- Set an information message for getServletInfo() method -->

<%@ page info="Hello-world example" %>

JSP include Directive

The "include" directive lets you include another file(s) at the time when the JSP page is compiled into

a servlet. You can include any JSP files, or static HTML files. You can use include directive to include

navigation bar, copyright statement, logo, etc. on every JSP pages. The syntax is:

<%@ include file="url" %>

For example:

<%@ include file="header.html" %>

......

<%@ include file="footer.html" %>

6. JSP Database Example

Let's have a look on example e-shop.

Database

Database: ebookshop

Table: books

+-------+----------------------------+---------------+---------+-------+

| id | title | author | price | qty |

| (INT) | (VARCHAR(50)) | (VARCHAR(50)) | (FLOAT) | (INT) |

+-------+----------------------------+---------------+---------+-------+

| 1001 | Java for dummies | Tan Ah Teck | 11.11 | 11 |

| 1002 | More Java for dummies | Tan Ah Teck | 22.22 | 22 |

| 1003 | More Java for more dummies | Mohammad Ali | 33.33 | 33 |

| 1004 | A Cup of Java | Kumar | 44.44 | 44 |

| 1005 | A Teaspoon of Java | Kevin Jones | 55.55 | 55 |

+-------+----------------------------+---------------+---------+-------+

Querying - "query.jsp"

Let's create the query page called "query.jsp".

1

2

3

<html>

<head>

 <title>Book Query</title>

Reference: Java Server Pages (Wrox), Web Programming with Java (O’Reilly)

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

</head>

<body>

 <h1>Another E-Bookstore</h1>

 <h3>Choose Author(s):</h3>

 <form method="get">

 <input type="checkbox" name="author" value="Tan Ah Teck">Tan

 <input type="checkbox" name="author" value="Mohd Ali">Ali

 <input type="checkbox" name="author" value="Kumar">Kumar

 <input type="submit" value="Query">

 </form>

 <%

 String[] authors = request.getParameterValues("author");

 if (authors != null) {

 %>

 <%@ page import = "java.sql.*" %>

 <%

 Connection conn = DriverManager.getConnection(

 "jdbc:mysql://localhost:8888/ebookshop", "", ""); // <== Check!

 // Connection conn =

 // DriverManager.getConnection("jdbc:odbc:eshopODBC"); // Access

 Statement stmt = conn.createStatement();

 String sqlStr = "SELECT * FROM books WHERE author IN (";

 sqlStr += "'" + authors[0] + "'"; // First author

 for (int i = 1; i < authors.length; ++i) {

 sqlStr += ", '" + authors[i] + "'"; // Subsequent authors need a leading commas

 }

 sqlStr += ") AND qty > 0 ORDER BY author ASC, title ASC";

 // for debugging

 System.out.println("Query statement is " + sqlStr);

 ResultSet rset = stmt.executeQuery(sqlStr);

 %>

 <hr>

 <form method="get" action="order.jsp">

 <table border=1 cellpadding=5>

 <tr>

 <th>Order</th>

 <th>Author</th>

 <th>Title</th>

 <th>Price</th>

 <th>Qty</th>

 </tr>

 <%

 while (rset.next()) {

 int id = rset.getInt("id");

 %>

 <tr>

Reference: Java Server Pages (Wrox), Web Programming with Java (O’Reilly)

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

 <td><input type="checkbox" name="id" value="<%= id %>"></td>

 <td><%= rset.getString("author") %></td>

 <td><%= rset.getString("title") %></td>

 <td>$<%= rset.getInt("price") %></td>

 <td><%= rset.getInt("qty") %></td>

 </tr>

 <%

 }

 %>

 </table>

 <input type="submit" value="Order">

 <input type="reset" value="Clear">

 </form>

 <a href="<%= request.getRequestURI() %>"><h3>Back</h3>

 <%

 rset.close();

 stmt.close();

 conn.close();

 }

 %>

</body>

</html>

Explanations

1. This HTML page has a form with 3 checkboxes. The "name=value" pair of the checkboxes is

"author=so_and_so". No "action" attribute is specified, hence, it defaulted to current page. The

processing script is contained in the same page.

2. The method request.getParameter("author") is used to check if the query parameter

"author" exists. "author" is absent during the first reference of the page.

3. The <%@ page .. %> contains a JSP "page" directive to import the java.sql package.

4. The scriptlet performs the database query operation. The steps are:

a. Establish a database connection via a java.sql.Connection object;

b. Allocate a java.sql.Statement object under the Connection;

c. Prepare a SQL SELECT string;

d. Execute the SQL SELECT using executeQuery() method. The result of query is returned

in an object of java.sql.ResultSet;

e. Process the ResultSet row by row via ResultSet.next();

f. Free resources and close the Connection.

5. The query result is tabulated in a HTML table. Note the mixing of HTML and Java in producing

the table.

Notice that JSP carries out the presentation much better and neater than servlet. The presentation can

be changed easily with JSP. The JSP pages can be created and modified using a WYSIWYG web

Reference: Java Server Pages (Wrox), Web Programming with Java (O’Reilly)

authoring tool and reload to see the effect on the presentation. Whereas, in the case of servlet, you

have to explicitly code all the HTML tags inside the servlet program and re-compile the program.

Ordering - "order.jsp"

Let's write the "order.jsp" for processing the order, by updating the appropriate records in the

database.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

<html>

<head>

 <title>Order Book</title>

</head>

<body>

 <h1>Another E-Bookstore</h1>

 <h2>Thank you for ordering...</h2>

 <%

 String[] ids = request.getParameterValues("id");

 if (ids != null) {

 %>

 <%@ page import = "java.sql.*" %>

 <%

 Connection conn = DriverManager.getConnection(

 "jdbc:mysql://localhost:8888/ebookshop", "myuser", "xxxx"); // <== Check!

 // Connection conn =

 // DriverManager.getConnection("jdbc:odbc:eshopODBC"); // Access

 Statement stmt = conn.createStatement();

 String sqlStr;

 int recordUpdated;

 ResultSet rset;

 %>

 <table border=1 cellpadding=3 cellspacing=0>

 <tr>

 <th>Author</th>

 <th>Title</th>

 <th>Price</th>

 <th>Qty In Stock</th>

 </tr>

 <%

 for (int i = 0; i < ids.length; ++i) {

 // Subtract the QtyAvailable by one

 sqlStr = "UPDATE books SET qty = qty - 1 WHERE id = " + ids[i];

 recordUpdated = stmt.executeUpdate(sqlStr);

 // carry out a query to confirm

 sqlStr = "SELECT * FROM books WHERE id =" + ids[i];

 rset = stmt.executeQuery(sqlStr);

 while (rset.next()) {

 %>

 <tr>

Reference: Java Server Pages (Wrox), Web Programming with Java (O’Reilly)

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

 <td><%= rset.getString("author") %></td>

 <td><%= rset.getString("title") %></td>

 <td>$<%= rset.getInt("price") %></td>

 <td><%= rset.getInt("qty") %></td>

 </tr>

 <% }

 rset.close();

 }

 stmt.close();

 conn.close();

 }

 %>

 </table>

 <h3>BACK</h3>

</body>

</html>

