
Web Engineering W. A. Khan, PUCIT

 1

Sockets programming in Java: A tutorial

Web Engineering

by Wasim Ahmad Khan

This tutorial presents an introduction to sockets programming over TCP/IP

networks and shows how to write client/server applications in Java.

TCP/IP and UDP/IP communications
There are two communication protocols that one can use for socket
programming: datagram communication and stream communication.

Note that both protocols are IP (Internet Protocol).

Datagram communication:

The datagram communication protocol, known as UDP (user datagram protocol),

is a connectionless protocol, meaning that each time you send datagrams, you

also need to send the local socket descriptor and the receiving socket's address.
As you can tell, additional data must be sent each time a communication is made.

Stream communication:

The stream communication protocol is known as TCP (transfer control protocol).

Unlike UDP, TCP is a connection-oriented protocol. In order to do communication

over the TCP protocol, a connection must first be established between the pair of

sockets. While one of the sockets listens for a connection request (server), the

other asks for a connection (client). Once two sockets have been connected, they
can be used to transmit data in both (or either one of the) directions.

Now, you might ask what protocol you should use -- UDP or TCP? This depends

on the client/server application you are writing. The following discussion shows

the differences between the UDP and TCP protocols; this might help you decide

which protocol you should use.

In UDP, as you have read above, every time you send a datagram, you have to

send the local descriptor and the socket address of the receiving socket along

with it. Since TCP is a connection-oriented protocol, on the other hand, a

connection must be established before communications between the pair of

sockets start. So there is a connection setup time in TCP.

In UDP, there is a size limit of 64 kilobytes on datagrams you can send to a

specified location, while in TCP there is no limit. Once a connection is established,

the pair of sockets behaves like streams: All available data are read immediately

in the same order in which they are received.

UDP is an unreliable protocol -- there is no guarantee that the datagrams you

have sent will be received in the same order by the receiving socket. On the other

hand, TCP is a reliable protocol; it is guaranteed that the packets you send will be
received in the order in which they were sent.

Web Engineering W. A. Khan, PUCIT

 2

In short, TCP is useful for implementing network services -- such as remote login

(rlogin, telnet) and file transfer (FTP) -- which require data of indefinite length to

be transferred. UDP is less complex and incurs fewer overheads. It is often used

in implementing client/server applications in distributed systems built over local
area networks.

Programming sockets in Java
In this section we will answer the most frequently asked questions about

programming sockets in Java. Then we will show some examples of how to write
client and server applications.

Note: In this tutorial we will show how to program sockets in Java using the

TCP/IP protocol only since it is more widely used than UDP/IP. Also: All the

classes related to sockets are in the java.net package, so make sure to import
that package when you program sockets.

How do I open a socket?

If you are programming a client, then you would open a socket like this:

Socket MyClient;

MyClient = new Socket("Machine name", PortNumber);

Where Machine name is the machine you are trying to open a connection to, and

PortNumber is the port (a number) on which the server you are trying to connect

to is running. When selecting a port number, you should note that port numbers

between 0 and 1,023 are reserved for privileged users (that is, super user or

root). These port numbers are reserved for standard services, such as email, FTP,

and HTTP. When selecting a port number for your server, select one that is

greater than 1,023!

In the example above, we didn't make use of exception handling, however, it is a

good idea to handle exceptions. (From now on, all our code will handle
exceptions!) The above can be written as:

Socket MyClient;

try {

 MyClient = new Socket("Machine name", PortNumber);

}

catch (IOException e) {

 System.out.println(e);

}

If you are programming a server, then this is how you open a socket:

ServerSocket MyService;

try {

 MyServerice = new ServerSocket(PortNumber);

 }

 catch (IOException e) {

 System.out.println(e);

 }

Web Engineering W. A. Khan, PUCIT

 3

When implementing a server you also need to create a socket object from the

ServerSocket in order to listen for and accept connections from clients.

Socket clientSocket = null;

try {

 serviceSocket = MyService.accept();

 }

catch (IOException e) {

 System.out.println(e);

}

How do I create an input stream?

On the client side, you can use the DataInputStream class to create an input

stream to receive response from the server:

DataInputStream input;

try {

 input = new DataInputStream(MyClient.getInputStream());

}

catch (IOException e) {

 System.out.println(e);

}

The class DataInputStream allows you to read lines of text and Java primitive

data types in a portable way. It has methods such as read, readChar,

readInt, readDouble, and readLine,. Use whichever function you think

suits your needs depending on the type of data that you receive from the server.

On the server side, you can use DataInputStream to receive input from the

client:

DataInputStream input;

try {

 input = new

DataInputStream(serviceSocket.getInputStream());

}

catch (IOException e) {

 System.out.println(e);

}

How do I create an output stream?

On the client side, you can create an output stream to send information to the

server socket using the class PrintStream or DataOutputStream of java.io:

PrintStream output;

try {

 output = new PrintStream(MyClient.getOutputStream());

}

Web Engineering W. A. Khan, PUCIT

 4

catch (IOException e) {

 System.out.println(e);

}

The class PrintStream has methods for displaying textual representation of Java

primitive data types. Its Write and println methods are important here. Also, you

may want to use the DataOutputStream:

DataOutputStream output;

try {

 output = new DataOutputStream(MyClient.getOutputStream());

}

catch (IOException e) {

 System.out.println(e);

}

The class DataOutputStream allows you to write Java primitive data types;

many of its methods write a single Java primitive type to the output stream. The

method writeBytes is a useful one.

On the server side, you can use the class PrintStream to send information to

the client.

PrintStream output;

try {

 output = new PrintStream(serviceSocket.getOutputStream());

}

catch (IOException e) {

 System.out.println(e);

}

Note: You can use the class DataOutputStream as mentioned above.

How do I close sockets?

You should always close the output and input stream before you close the socket.

On the client side:

try {

 output.close();

 input.close();

 MyClient.close();

}

catch (IOException e) {

 System.out.println(e);

}

On the server side:

Web Engineering W. A. Khan, PUCIT

 5

try {

 output.close();

 input.close();

 serviceSocket.close();

 MyService.close();

}

catch (IOException e) {

 System.out.println(e);

}

Examples
In this section we will write two applications: a simple SMTP (simple mail transfer
protocol) client, and a simple echo server.

1. SMTP client

Let's write an SMTP (simple mail transfer protocol) client -- one so simple that we

have all the data encapsulated within the program. You may change the code

around to suit your needs. An interesting modification would be to change it so

that you accept the data from the command-line argument and also get the input

(the body of the message) from standard input. Try to modify it so that it work
on your machine.

import java.io.*;

import java.net.*;

public class smtpClient {

 public static void main(String[] args) {

// declaration section:

// smtpClient: our client socket

// os: output stream

// is: input stream

 Socket smtpSocket = null;

 DataOutputStream os = null;

 DataInputStream is = null;

// Initialization section:

// Try to open a socket on port 25

// Try to open input and output streams

 try {

 smtpSocket = new Socket("hostname", 25);

 os = new

DataOutputStream(smtpSocket.getOutputStream());

 is = new

DataInputStream(smtpSocket.getInputStream());

 } catch (UnknownHostException e) {

 System.err.println("Don't know about host:

hostname");

 } catch (IOException e) {

 System.err.println("Couldn't get I/O for the

Web Engineering W. A. Khan, PUCIT

 6

connection to: hostname");

 }

// If everything has been initialized then we want to write

some data

// to the socket we have opened a connection to on port 25

if (smtpSocket != null && os != null && is != null) {

 try {

// The capital string before each colon has a special meaning

to SMTP

// you may want to read the SMTP specification, RFC1822/3

os.writeBytes("HELO\n");

os.writeBytes("MAIL From: wasim.ahmad@pucit.edu.pk\n");

os.writeBytes("RCPT To: bsef16m007@pucit.edu.pk\n");

os.writeBytes("DATA\n");

os.writeBytes("From: wasim.ahmad@pucit.edu.pk \n");

os.writeBytes("Subject: testing\n");

os.writeBytes("Hello Class\n"); // message body

os.writeBytes("\n.\n");

os.writeBytes("QUIT");

// keep on reading from/to the socket till we receive the "Ok"

from SMTP,

// once we received that then we want to break.

 String responseLine;

 while ((responseLine = is.readLine()) != null)

{

 System.out.println("Server: " +

responseLine);

 if (responseLine.indexOf("Ok") != -1) {

 break;

 }

 }

// clean up:

// close the output stream

// close the input stream

// close the socket

os.close();

 is.close();

 smtpSocket.close();

 } catch (UnknownHostException e) {

 System.err.println("Trying to connect to

unknown host: " + e);

 } catch (IOException e) {

 System.err.println("IOException: " + e);

 }

 }

 }

}

Web Engineering W. A. Khan, PUCIT

 7

When programming a client, you must follow these four steps:

 Open a socket.

 Open an input and output stream to the socket.

 Read from and write to the socket according to the server's protocol.

 Clean up.

These steps are pretty much the same for all clients. The only step that varies is
step three, since it depends on the server you are talking to.

2. Echo server

Now let's write a server. This server is very similar to the echo server running on

port 7. Basically, the echo server receives text from the client and then sends

that exact text back to the client. This is just about the simplest server you can

write. Note that this server handles only one client. Try to modify it to handle
multiple clients using threads.

import java.io.*;

import java.net.*;

public class echo3 {

 public static void main(String args[]) {

// declaration section:

// declare a server socket and a client socket for the server

// declare an input and an output stream

 ServerSocket echoServer = null;

 String line;

 DataInputStream is;

 PrintStream os;

 Socket clientSocket = null;

// Try to open a server socket on port 9999

// Note that we can't choose a port less than 1023 if we are

not

// privileged users (root)

 try {

 echoServer = new ServerSocket(9999);

 }

 catch (IOException e) {

 System.out.println(e);

 }

// Create a socket object from the ServerSocket to listen and

accept

// connections.

// Open input and output streams

try {

 clientSocket = echoServer.accept();

 is = new

Web Engineering W. A. Khan, PUCIT

 8

DataInputStream(clientSocket.getInputStream());

 os = new

PrintStream(clientSocket.getOutputStream());

// As long as we receive data, echo that data back to the

client.

 while (true) {

 line = is.readLine();

 os.println(line);

 }

 }

catch (IOException e) {

 System.out.println(e);

 }

 }

}

Conclusion
Programming client/server applications is challenging and fun, and programming

this kind of application in Java is easier than doing it in other languages, such as
C. Socket programming in Java is seamless.

The java.net package provides a powerful and flexible infrastructure for network

programming, so you are encouraged to refer to that package if you would like to

know the classes that are provided.

Resources & References

 Lectures and Code examples

 The Java packages API (including java.net)

 Java Network Programming, 4th Edition

