

- 1 -

Polymorphism

What?

Polymorphism literally means “of multiple shapes/forms” and in the context of OOP,
polymorphism means “having multiple behaviors”.

How?

Consider the following class hierarchy. We have already discussed this hierarchy in the
handout on “Inheritance”.

 Normally, when we want to create an object of a class we call its constructor. To

create an object of class Person we write

Person per = new Person ();

There is nothing strange in the above line of code as we create objects of a class by
calling its any of the available constructor.

 BUT, polymorphism allows us also to write the following line of code

Person per = new Employee ();

Don’t be surprised; just revisit the concept of inheritance i.e. is a relationship. Since
we can say that Employee is a Person. It means that a variable of type Person can
point to an object of type Employee. That’s what we have translated above in the
form of code. What do you think about the following line?

Person ahmad = new Teacher ();

Employee

Teacher Manager

Person

- 2 -

Employee usman = new Manager ();

These are 100 percent correct and rightly so, because Teacher is a Person as well as
Manager is an Employee.

Note: The reversal of the above is not necessarily to be true. For example, Person is not
necessarily a Teacher. As according to the above given hierarchy, Person can be
either an Employee or Person can be a Teacher or a Manger.

Rule of thumb

 Since a child class object is also an object of its parent class therefore it can be

pointed by a reference of parent class. Or in other words “A parent class reference
variable can be used to point any objects of its descendants (subclasses)”.

Understanding Polymorphism

 Just cast a glance over the hierarchy given above so that we can completely

understand the concept of polymorphism.

 From the hierarchy, we came to know that Person is a (direct) superclass of Employee

and also Person is a (indirect) superclass of Teacher as well as of Manager.

 Hence, by bearing in mind is a relationship, we can say that Employee is a Person or

Teacher is a Person or Manager is a Person.

 Or we can say that Person can take the form of Employee, Person can take the form

of Teacher and Person can take the form of Manager. (Remember that polymorphism
means “of multiple forms”).

Polymorphic Methods

Happily, there is no new concept under this title. In fact, overridden methods are so called
polymorphic (“having different behavior”).

Just think a while, why we need method overriding? Of course, overriding allows the
subclass to modify the behavior (method) of the superclass as needed. This indicates that
a method in subclass will have a different behavior from the one in the superclass.

 - 3 -

Point to Remember

 A polymorphic method results in different actions (behaviors) depending on the

object being referenced. This phenomenon often referred as late binding or run-time
binding.

This has been explained in the following example:

Polymorphism Example

The Test.java class uses the instances of class Employee and Teacher. We have
already defined these classes in the handout on “Inheritance”. These classes are used in
this example without any modification.

Instructions

 Modify the file Test.java of inheritance example, one we defined in the handout

on “Inheritance”.

 Write the following lines of code inside Test.java.

 Make sure that Employee and Teacher classes are available in the current

directory you are working in to run the Test class.

Code

The Test class acts as a driver class as it contains the main method. Objects of Employee
& Teacher class are created inside main and calls are made to display and toString
method using these objects.

 class Test{

 public static void main (String args[]){

 // Make employee references
 Employee ref1, ref2;

 ref1 = new Employee(89, "khurram ahmad");

 // is-a relationship, polymorphism
 ref2 = new Teacher (91, "ali raza", "phd");

 ref1.display(); //call to Employee class display method
 ref2.display(); //call to Teacher class display method

 - 4 -

 System.out.println("Employee: " +ref1.toString());

 System.out.println("Teacher: " + ref2.toString());

 } //end of main

 }//end class

Understanding Run-Time Binding

 In the above code example, two Employee class references namely ref1 & ref2 are
created. An Employee object is assigned to ref1 & Teacher object is assigned to ref2
(polymorphism). This is shown in the example code as

 ref2 = new Teacher (91, “ali raza”, “phd”);

Now, take next line of code, i.e.

 ref1.display ();

It will make call to display method of Employee class. But the next line of code contains
the real interesting part.

 ref2.display ();

Apparently, it seems that it will also make a call to the display method of Employee class
object, but this does not happen. Actually, it makes call to display method of Teacher
class. Let’s closely examine what is happening behind the scenes?

When we compile our Test class using javac command, the compiler will ensure that
display method should exist in the Employee class. On execution of Test program, java
will check that ref2 is pointing to which class’s object? In our case, it is pointing to
Teacher class that’s why it will call the display method of Teacher class.

As all this has happened at the run time or at the execution time of the program, for this
reason it is called run time binding or late binding.

- 5 -

Type Casting

Java is a strongly typed language. You cannot declare a variable or a reference of a class
without specifying its type. Sometime there is a requirement to convert (cast) one data
type into another. There are two types of casting: UpCasting & DownCasting. While
casting, following points should be kept in mind

UpCasting

In upcasting we convert a smaller datatype into a larger datatypes. Since converting a
smaller dataytype into a larger datatype does not cause any information loss therefore
upcasting is implicit (i.e. it occurs automatically and we do not have to write any extra
piece of code)

DownCasting

In downcasting we convert a larger datatype into a smaller datatype. Since converting a
larger dataytype into a smaller datatype may cause an information loss therefore
downcasting is explicit (i.e. it does not occur automatically and we have to tell compiler
that we want to downcast otherwise it won’t let us compile the code)

Upcasting and Downcasting in Primitives

In primitive datatypes such as int, float, double upcasting occurs when we convert a
smaller data type (in terms of size (bytes)) into a large data type. For example; converting
int (4 bytes) to long (8 bytes) or float (4 bytes) to double(8 bytes). This has been shown
in the following code fragment.

 int i = 4;
 double d ;

 d = i;

Since double is a bigger type, conversion is automatic but when we convert from double
to int there can be a loss of information and therefore explicit casting is required (i,e, we
are telling the compiler that we know what we are going to do, so do it.)

 double d = 4;
 int i ;

 i =(int)d;

Explicit typecasting of double into an integer

 - 6 -

Upcasting and downcasting in Objects

Often students find it hard to understand the concept of upcasting in classes. They think
that since Teacher class is a child of Employee so it should contain more variables then
Employee (due to inheritance, its own + that of Employee) and therefore objects of
Teacher class need more memory and hence Teacher is a larger Datatype.

This concept is wrong, a simple rule of thumb is that a class that is higher in the hierarchy
is a larger class so you can implicitly upcast your child objects to parent class type. Here
Employee class is a bigger class then Teacher or Manager class, similarly Person is larger
class then all of Employee, Teacher or Manager. To understand why, from inheritance we
know that every teacher is an employee and every manager is also an employee, it means
that Employee class has more objects than either of Teacher or Manager (It contains its
own objects + objects of Teacher + objects of Manager), which shows that Employee is a
larger class/datatype and upcasting to larger datatype is implicit. Also another view could
be that since Teacher and Manager are Employee (due to inheritance) hence a variable
declared of type Employee can point to objects of type Teacher or Manager

 Employee e ;

Teacher t = new Teacher()
e = t ;

Here ‘e’ is of type Employee and ‘t’ is of type Teacher and ‘t’ is also pointing to a
teacher object since Teacher is an Employee (due to inheritance) therefore ‘e’ can point
to object pointed by ‘t’. Don’t need to do anything implicit /upcasting takes place

However converting from Teacher to Employee won’t be possible without explicit
casting e.g

 Employee e = new Teacher() ;

Teacher t;
t = (Teacher)e ;

Employee

Teacher Manager

Person

 - 7 -

Here though ‘e’ is pointing to a teacher object but still we can not assign it to ‘t’ without
explicit downcast because Teacher is a smaller data type. Also since ‘e’ can point to
Employee object as well as Teacher object as well as Manager object so it would not be
possible for the compiler to tell in which type we want to cast ‘e’ hence we have told the
compiler explicitly here that we want to convert the object pointed by ‘e’ to Teacher
datatype. Had it been a wrong cast, for example suppose instead of pointing to a Teacher
object ‘e’ is pointing to a Manager object then it would have caused the exception.

 8 -

References:

 Java tutorial by Sun: http://sun.com/docs/books/tutorial/java/javaOO/
 Stanford University

