
1

Abstract Classes a
and

Interfaces
Abstract Classes

Class Shape Hierarchy

• Consider the following class hierarchy

Shape

Circle Square

Problem AND Requirements
• Suppose that in order to exploit polymorphism, we

specify that 2-D objects must be able to compute
their area.
– All 2-D classes must respond to area() message.

• How do we ensure that?
– Define area method in class Shape
– Force the subclasses of Shape to respond area()

message

• Java’s Solutions
– Abstract Classes
– Interfaces

Abstract Classes
• Idea

– To define only part of an implementation
§ Can contain instance variables & methods that are

fully implemented

– Leaving the subclasses to provide the details

• Any class with an abstract method must be
declared abstract
– However you can declare a class abstract that has

no abstract method.

– An abstract method has no implementation (known
in C++ as a pure virtual function)

Abstract Classes
• If subclass overrides all abstract methods of the

superclass, than it becomes a concrete class
otherwise we have to declare it as abstract or we
can not compile it

• Any subclass can override a concrete method inherited
from the superclass and declare them abstract

• An abstract class cannot be instantiated

• However references to an abstract class can be declared
– Can point to the objects of concrete subclasses

2

Example of abstract class
Shape.java

/* This is an example of abstract class. Note that
this class contains an abstract method with no
definition.

*/

public abstract class Shape {

public abstract void calculateArea();

}

Circle.java
/* This class extends from abstract Shape class. Therefore to
become concrete class it must provides the definition of
calculateAreamethod.

*/

public class Circle extends Shape {

private int x, y;

private int radius;

public Circle() {

x = 5;

y = 5;

radius = 10;

}

// continue

Circle.java
// providing definition of abstract method

public void calculateArea () {

double area = 3.14 * (radius * radius);

System.out.println(“Area: ” + area);

}

}//end of class

Test.java (Driver class)
public class Test {

public static void main (String args[]){

//can only create references of abstract class

Shape s = null;

// Shape s1 = new Shape(); //cannot instantiate abstract class

//can point to the concrete subclass

s = new Circle();

s.calculateArea();

}

}

Compile & Execute

Interfaces

3

Interfaces

– A special java type which

• Defines a set of method prototypes, but does not
provide the implementation for the prototypes

• Essentially all the methods inside an interface are
Abstract Methods or we can say that an interface
is like a pure abstract class (Zero Implementation)

• Can also define static final constants

Interfaces Definition Example
• Syntax (appears like abstract class):
• All methods are abstract and public by default

• All constants are static and final by default

public interface Speaker {

public void speak();

}

Implementing (Using) Interfaces

• Classes Implement interfaces

– Implementing an interface is like signing a contract.

– A class that implements an interface will have to provide the
definition of all the methods that are present inside an interface“

– If the class does not provide definitions of all methods, the class
would not compile. We have to declare it as an abstract class in
order to get it compiled.

• “Responds to” relationship
– Relationship between a class and interface

Interface - Example

speak()

Politician Coach

<<Interface>>
Speaker

speak() speak()

Lecturer

speak()

Implementing Interfaces Example

class Politician implements Speaker {
public void speak(){

System.out.println(“Talk politics”);
}

}

class Coach implements Speaker {
public void speak(){

System.out.println(“Sports Talks”);
}

}

class Lecturer implements Speaker {
public void speak(){

System.out.println(“Web Desing and Development Talks”);
}

}

Example Code

public interface Printable {
public void print();

}

public class Student implements Printable{
private String name;
private String address;

public String toString () {
return "name:"+name +" address:"+address;

}
// NOT providing implementation of print method

}

Defining Interface

Implementing Interface

4

Compile Example Code (cont.)

public class Student implements Printable{

private String name;
private String address;

public String toString () {
return "name:"+name +" address:"+address;

}

public void print() {
System.out.println("Name:" +name+" address"+address);

}

}

Implementing Interface (Modification)

Compile More on Interfaces
• Interface imposes a design structure on any class that

uses the interface

• Leaves the implementation details to the implementing
class and hides that implementation from the client.

• A class can implement more than one interfaces. Java’s
way of multiple inheritance

class Circle implements Drawable, Printable {

//additional constants and abstract methods

}

More on Interfaces (cont.)
• Classes inherit from classes (Single), interfaces inherit

from interfaces (Can be multiple) and classes implement
interfaces (Can be multiple)

public interface Displayable extends Drawable, Printable {

//additional constants and abstract methods

}

• Objects of interfaces cannot be instantiated.

Speaker sp = new Speaker(); // not comaile

• However a reference of interface can be created to point
to any of its implementation class (Interface based
polymorphism).

Interface based
Polymorphism

5

Review again – Interface Example

speak()

Politician Coach

<<Interface>>
Speaker

speak() speak()

Lecturer

speak()

Example: Interface based Polymorphism
/* Speaker interface is implemented by the Politician, Coach and
Lecturer class. */

public class Test{
public static void main (String args[]) {

Speaker sp = null;

System.out.println("sp pointing to Politician");
sp = new Politician();
sp.speak();

System.out.println("sp pointing to Coach");
sp = new Coach();
sp.speak();

System.out.println("sp pointing to Lecturer");
sp = new Lecturer();
sp.speak();

}
}

Interface based Polymorphism
Compile & Execute

Interfaces vs. Abstract classes

• Fairly similar uses
– designed to group behavior, allow upcasting, exploit

polymorphism

• Rules of thumb

– Choose abstract class if we have shared code and logical “is a”
relationship

– Choose interface if only want to ensure design structure (method
signatures) and/or it is not logical to use “is a “ relationship.

