
1

Intro to Exceptions

Types of Programming Errors
• Three types of error:

– Syntax Errors – arise because the rules of the language are not followed.

– Runtime Errors – arise because the program tries to perform an operation that is
impossible to carry out.

– Logic Errors – arise because the program does perform the way it was intended to.

• Syntax errors are caught by the compiler, and fixed before the
program is run.

• Logic Errors are detected by testing, and are fixed through
debugging.

• Runtime Errors cause Exceptions and may be handled at runtime.

Exceptions

• An exception is an event that describes an unusual or
erroneous situation at runtime.

• Exceptions are wrapped up as objects

• A program can deal with an exception in one of three ways:

– ignore it
– handle it where it occurs
– handle it an another place in the program

• An error is also represented as an object in Java, but
usually represents an unrecoverable situation and should
not be caught

Why Use Exceptions?

• Uses of exception handling
– Process exceptions from program components

– Handle exceptions in a uniform manner in
large projects

– Remove error-handling code from “main line”
of execution

• What if Exception is not handled?
– Might terminate program execution

Exceptions Types

• Two Types
– Unchecked

• Subclasses of RuntimeException and Error.

• Does not require explicit handling

• Run-time errors are internal to your program, so
you can get rid of them by debugging your code

• For example, null pointer exception; index out of
bounds exception; division by zero exception; ...

Exceptions Types

• Two Types
– Checked

• Must be caught or declared in a throws clause

• Compile will issue an error if not handled
appropriately

• Subclasses of Exception other than subclasses of
RuntimeException.

• Other arrive from external factors, and cannot be
solved by debugging

• Communication from an external resource – e.g. a
file server or database

2

Throwable

Exception Error

IOException

ArrayIndexOutOfBoundsException InputMismatchException

NullPointerException

Runtime
Exception

AWTError ThreadDeath

ClassCastException

OutOf
MemoryError

ArithmeticException

Portion of
Throwable
hierarchy

Checked Exceptions

UnChecked Exceptions
Error

How are
Java Exceptions Handled

How are Java exceptions
handled

• Basic Java exception handling is managed via
keywords: try, catch, finally, throw, throws.

• try block

– Code that could generate errors put in try blocks

• catch block

– Code for error handling enclosed in a catch clause

• finally block
– The finally clause always executes

– Resources that are opened may need to be closed during
exception handling

– Appears after the last catch block

– It wil not execute if System.exit(0) occurs first

How are Java exceptions
handled

• throw

– To manually throw an exception, use the keyword throw.

• throws

– throws exception out of the method, requiring it to be caught and
handled by an appropriate exception handler

– Any exception that is thrown out of a method must be specified as
such by a throws clause.

Exception-Handling Struct

try //tryblock
{

// write code that could generate exceptions
} catch (<exception to be caught>) //catch block
{

//write code for exception handling
}
……
catch (<exception to be caught>) //catch block

{
//code for exception handling

} finally / /finallyblock
{

//any clean-up code, release the acquired resources
}

try-catch-finally block

Execute try block Find catch block to execute

Execute catch block
for

exception1

Execute catch block
for

exception2

Execute catch block
for

exceptionn

…..

Execute finally block

[exception]

[no exception] …..

[exception 1] [exception 2] [exception n]

3

Examples

Example: Unchecked Exceptions

public class UcException {

public static void main(String args[]) {

System.out.println(args[0]);
}

}

Example: Unchecked Exceptions
compile & execute Example: Unchecked Exceptions

public class UcException {

public static void main(String args[]) {

System.out.println(args[0]);
}

}

Example: Unchecked Exceptions
Modification

public class UcException {

public static void main(String args[]) {

try {

System.out.println(args[0]);

}catch (IndexOutOfBoundsException ex) {

System.out.println(“You forget to pass command line argument”);

}

}
}

Example: Unchecked Exceptions
compile & execute

4

Example: Checked Exceptions

import java.io.*;

public class CException {

public static void main(String args[]) {

FileReader f r = new FileReader (“input.txt”);
BufferedReader br = new BufferedReader(fr);

//read the line
String s = br.readLine();
System.out.println(s);

}
}

Example: Checked Exceptions
compile & execute

Example: Checked Exceptions
Modification

import java.io.*;
public class CException {

public static void main(String args[]) {
try {

FileReader fr = new FileReader (“input.txt”);
BufferedReader br = new BufferedReader(fr);

//read the line
String s = br.readLine();
System.out.println(s);

} catch (IOException ex) {
System.out.println(ex);

}
}

}

Example: Checked Exceptions
compile & execute

Example: finally block
import java.io.*;
public class FBlockDemo {

public static void main(String args[]) {
try {

FileReader fr = new FileReader (“numbers.txt”);
BufferedReader br = new BufferedReader(fr);

String s = br.readLine();
System.out.println(s);

}catch (IOException ioEx) {
System.out.println(ioEx);

} finally {
System.out.println(“finally block always execute”);

//write any clean up code if required
}

}//end of main
}//end of class

Compile & Execute
If “string.txt” isn’t there, it will throw FileNotFoundException
Note that finally block executes

If “string.txt” exist, hopefully no exception would be thrown
Note that finally block still executes

5

Multiple Catch Blocks
• Possible to have multiple catch clauses for a

single try statement
[

– Essentially checking for different types of exceptions
that may happen

• Evaluated in the order of the code

– Bear in mind the Exception hierarchy when writing
multiple catch clauses!

– If you catch Exception first and then IOException, the
IOException will never be caught!

Example: Multiple catch blocks
/* numbers.txt contains numbers. After reading number

from file, prints its square on console */

import java.io.*;
public class MCatchDemo {
public static void main(String args[]) {

try {
//may throw FileNotFound & IOException
FileReader fr = new FileReader (“numbers.txt”);
BufferedReader br = new BufferedReader(fr);

//read the line
String s = br.readLine();

//may throw NumberFormatException, if s is not no.
int number = Integer.parseInt(s);
System.out.println(number * number);

Example: Multiple catch blocks

} catch (NumberFormatException nfEx) {

System.out.println(nfEx);
} catch (FileNotFoundException fnfEx) {

System.out.println(fnfEx);

} catch (IOException ioEx) {

System.out.println(ioEx);
}

}
}

Compile & Execute
If “numbers.txt” isn’t there, it will throw FileNotFoundException

If “numbers.txt” exist and contains a number, Hopefully no exception
would be occurred

The throws clause

The throws clause

• Method doesn’t want to handle exception
itself

• it throws the exception, the caller should
handle this exception or throws the
exception itself

• A method should specify the exceptions it
throws by placing a throws clause after the
parameter list

6

printStackTrace() is your friend!

• When dealing with exceptions
• Especially when debugging
• printStackTrace() will:

– Show you the full calling history
– With line numbers

• Note:
– Bad idea to eat an exception silently!
– Either printStackTrace() or pass it along to be

handled at a different level

What if

– Method throws back the exception

– No catch blocks matches

– Exception is not handled

Java
runtime
system

main
method

calls main

method1

calls method1

method2

calls method2

exception

if not caught
or

throws back

if not caught
or

throws back

if not caught
or

throws back

Example: throws clause
// this example shows the use of throws clasuse and printStackTrace() method

import java.io.*;

public class ThrowsDemo{

//method used to read line from file
public static void method2 () {

try {
FileReader fr = new FileReader(“string.txt ”);
BufferedReader br = new BufferedReader(fr);

String s = br.readLine();
System.out.println(s);

}catch (IOException ioEx) {
ioEx.printStackTrace();

}
} //end of method

Example: throws clause
// used to call method1
public static void method1 () {

method2();
}

public static void main(String args[]){

ThrowsDemo.method1();

}

}//end of class

Example: throws clause

…..
public static void method2 () throws IOException {

FileReader f r = new FileReader();
BufferedReader br = new BufferedReader(fr);

String s = br.readLine();
System.out.println(s);

} //end of method
…….

• Method2 doesn’t want to handle exception itself, so it
throws the exception to the caller

• So method2 modified as

Example: throws clause
• As method2 is throwing the exception and method1 is invoking method 2
• So method1 either can handles the coming exception or rethrows it

• If method1 is handling the exception than method1 would be modified as

// used to call method1
public static void method1 () {

try {
method2();

catch (IOException ioEx) {
ioEx.printStackTrace();

}
}

public static void main(String args[]){
ThrowsDemo.method1();

}

}//end of class

7

Compile & Execute
If “string.txt” isn’t there, it will throw FileNotFoundException

If “string.txt” exist there and contains string

