
JAVA I/O
Streams and Files

Lecture 06
Web Engineering by
Wasim Ahmad Khan

I/O
• Usual Purpose: storing data to
‘nonvolatile‘ devices, e.g. harddisk

• Classes provided by package java.io

• Data is transferred to devices by ‘streams‘

Program Device
output - stream

Program Device
input - stream

Streams
• JAVA distinguishes between 2 types of streams:

• Text – streams, containing ‘characters‘

I ‘ M A S T R I N G \nProgram Device

•Binary Streams, containing 8 – bit information

01101001Program Device11101101 00000000

Streams
• Streams in JAVA are Objects, of course !

• Having

• 2 types of streams (text / binary) and
• 2 directions (input / output)

• results in 4 base-classes dealing with I/O:

1. Reader: text-input
2. Writer: text-output
3. InputStream: byte-input
4. OutputStream: byte-output

Streams
• InputStream

• OutputStream

• Reader

• Writer

binary

text

Streams

• InputStream, OutputStream, Reader, Writer are abstract
classes

• Subclasses can be classified by 2 different characteristics of
sources / destinations:

– For final device (data sink stream)
purpose: serve as the source/destination of the stream
(these streams ‘really’ write or read !)

– for intermediate process (processing stream)
Purpose: alters or manages information in the stream
(these streams are ‘luxury’ additions, offering methods for convenient
or more efficient stream-handling)

I/O: General Scheme
• In General:
• Reading (writing):

– open an input (output) stream

– while there is more information

read(write) next data from the stream

– close the stream.

• In JAVA:
– Create a stream object and associate it with a disk-file

– Give the stream object the desired functionality

– while there is more information

read(write) next data from(to) the stream

– close the stream.

Example 1
• Writing a textfile:

– Create a stream object and

associate it with a disk-file

– Give the stream object the

desired functionality

– write data to the stream

– close the stream.

Writing Textfiles
• Class: FileWriter

• Frequently used methods:

Writing Textfiles
• Using FileWriter

• is not very convenient (only String-output
possible)

• Is not efficient (every character is written in a
single step, invoking a huge overhead)

• Better: wrap FileWriter with processing streams

• BufferedWriter

• PrintWriter

Wrapping Textfiles
• BufferedWriter:

• Buffers output of FileWriter, i.e. multiple
characters are processed together, enhancing
efficiency

• PrintWriter

• provides methods for convenient handling,
e.g. println()

• (remark: the System.out.println() – method is a method of the
PrintWriter-instance System.out !)

Wrapping a Writer
• A typical codesegment for opening a

convenient, efficient textfile:

• FileWriter out = new FileWriter("test.txt");

• BufferedWriter b = new BufferedWriter(out);

• PrintWriter p = new PrintWriter(b);

• Or with anonymous (‘unnamed‘) objects:

• PrintWriter p = new PrintWriter(

• new BufferedWriter(

• new FileWriter("test.txt")));

Reading Textfiles
• Class: ReadText

• Frequently used Methods:

(The other methods are used for

positioning, we don’t cover that here)

Wrapping a Reader
• Again:

• Using FileReader is not very efficient. Better

• wrap it with BufferedReader:

• BufferedReader br =

• new BufferedReader(

• new FileReader(“name“));

• Remark: BufferedReader contains the method readLine(), which is
convenient for reading textfiles

EOF Detection

• Detecting the end of a file (EOF):

• Usually amount of data to be read is not known

• Reading methods return ‘impossible‘ value if end
of file is reached

• Example:
– FileReader.read returns -1

– BufferedReader.readLine() returns ‘null‘

• Typical code for EOF detection:
• while ((c = myReader.read() != -1){ // read and check c

• ...do something with c

• }

Example 2: Copying a Textfile
• import java.io.*;

• public class IOTest

• {

• public static void main(String[] args)

• {

• try{

• BufferedReader myInput = new BufferedReader(new
FileReader("IOTest.java"));

• BufferedWriter myOutput = new BufferedWriter(new
FileWriter("Test.txt"));

•

• int c;

• while ((c=myInput.read()) != -1)

• myOutput.write(c);

•

• myInput.close();

• myOutput.close();

• }catch(IOException e){}

• }

• }

Binary Files

• Stores binary images of information identical
to the binary images stored in main memory

• Binary files are more efficient in terms of
processing time and space utilization

• drawback: not ‘human readable‘, i.e. you
can‘t use a texteditor (or any standard-tool)
to read and understand binary files

Binary Files

• Example: writing of the integer ’42‘

• TextFile: ‘4‘ ‘2‘ (internally translated to 2
16-bit representations of the characters
‘4‘ and ‘2‘)

• Binary-File: 00101010, one byte

• (= 42 decimal)

Writing Binary Files

• Class: FileOutputStream

• ... see FileWriter

• The difference:

• No difference in usage, only in output format

Reading Binary Files

• Class: FileInputStream

• ... see FileReader

• The difference:

• No difference in usage, only in output format

Binary vs. TextFiles

pro con

Binary Efficient in terms of

time and space

Preinformation

about data needed

to understand

content

Text Human readable,

contains redundant

information

Not efficient

Binary vs. TextFiles

When use Text- / BinaryFiles ?

• ALWAYS use TextFiles for final results if

there’s no imperative reason to favor efficiency against readability.

Example: SIP - Standard

• Binary Files might be used for non-final

interchange between programs

• Binary Files are always used for large

amount of data (images, videos etc.), but

there’s always an exact definition of the meaning of the bytestream

Example: JPG, MP3, BMP

Streams and Files

Have a look in detail….

There are many different types of Byte-Oriented

Streams
Represented by different classes within the java.io.package

All byte-oriented streams are subclasses of a common Stream class

Input Streams are subclasses of the abstract class java.io.InputStream

Output Streams are subclasses of the abstract class

java.io.OutputStream

All byte-oriented streams inherit basic methods from their respective

superclasses

Some define new methods pertinent to the type of data they provide.

• Byte-oriented streams are closely related to the I/O

streams provided by other programming languages like

C, C++, and pascal.

Because they are byte-oriented they are suitable for

reading binary and ASCII data.
Byte-oriented streams do not work well with unicode text.

Use character oriented streams for unicode.

Byte Oriented Streams

The following is the byte-oriented input stream class
hierarchy:

Byte-Oriented Input Stream Classes

InputStream

ByteArrayInputStream FileInputStream

FilterInputStream

ObjectInputStream PipedInputStream

SequenceInputStream

BufferedInputStream DataInputStream PushbackInputStream

ZipInputStream ZipInputStream is defined in: java.util.zip

Reading

read() methods will block until data is available to be read

two of the three read() methods return the number of bytes read

-1 is returned if the Stream has ended

throws IOException if an I/O error occurs. This is a checked exception

• There are 3 main read methods:

int read()

Reads a single character. Returns it as integer

int read(byte[] buffer)

Reads bytes and places them into buffer (max = size of buffer)

returns the number of bytes read

InputStream Methods

available() method returns the number of bytes which
can be read without blocking

skip() method skips over a number of bytes in the input

stream

close() method will close the input stream and release

any system resources

input streams optionally support repositioning the stream

can mark the stream at a certain point and 'rewind' the stream to that

point later.

methods that support repositioning are:

markSupported() returns true if repositioning is supported

InputStream Methods

InputStream is an abstract class

Programmers can only instantiate subclasses.

ByteArrayInputStream:

Constructor is provided with a byte array.

This byte array contains all the bytes provided by this stream

Useful if the programmer wishes to provide access to a byte array using

the stream interface.

FileInputStream:

Constructor takes a filename, File object or FileDescriptor Object.

Opens a stream to a file.

Creating an InputStream

ObjectInputStream

Created from another input stream (such as FileInputStream)

Reads bytes from the stream (which represent serialized Objects) and

converts them back into Objects

More on Serialization later in the Chapter.

PipedInputStream:

Connects to an Instance of PipedOutputStream

A pipe represents a one-way stream through which 2 threads may

communicate

Thread1 writes to a PipedOutputStream

Thread2 reads from the PipedInputStream

SequenceInputStream:

Constructor takes multiple InputStreams

Creating an InputStream

The following is the byte-oriented input stream class
hierarchy:

Byte-Oriented Output Stream

Classes

OutputStream

ByteArrayOutputStream FileOutputStream

FilterOutputStream

ObjectOutputStream

PipedOutputStream

BufferedOutputStream DataOutputStream PrintStream

ZipOutputStream ZipOutputStream is defined in: java.util.zip

Writing:

write() methods write data to the stream. Written data is buffered.

Use flush() to flush any buffered data from the stream.

throws IOException if an I/O error occurs. This is a checked exception

There are 3 main write methods:

void write(int data)

Writes a single character

Note: even though data is an integer, data must be set such that:

0 <= data <= 255

void write(byte[] buffer)

Writes all the bytes contained in buffer to the stream

OutputStream Methods

flush()

To improve performance, almost all output protocols buffer output.

Data written to a stream is not actually sent until buffering thresholds are

met.

Invoking flush() causes the OutputStream to clear its internal buffers.

close()

Closes stream and releases any system resources.

OutputStream Methods

OutputStream is an abstract class.

Programmers instantiate one of its subclasses

ByteArrayOutputStream:

Any bytes written to this stream will be stored in a byte array

The resulting byte array can be retrieved using toByteArray() method.

FileOutputStream:

Constructor takes a filename, File object, or FileDescriptor object.

Any bytes written to this stream will be written to the underlying file.

Has one constructor which allows for appending to file:

FileOutputStream(String filename, boolean append)

FilterOutputStream:

Creating an OutputStream

ObjectOutputStream

Created from another output stream (such as FileOutputStream)

Programmers serialize objects to the stream using the writeObject()

method

More on Serialization later in the Chapter.

PipedOutputStream:

Connects to an Instance of PipedInputStream

A pipe represents a one-way stream through which 2 threads may

communicate

Thread1 writes to a PipedOutputStream

Thread2 reads from the PipedInputStream

Creating an OutputStream

Example - Copy a File

import java.io.*;

public class CopyFile

{

public void copyFile(String inputFilename, String outputFilename)

{

try

{

FileInputStream fpin = new FileInputStream(inputFilename);

FileOutputStream fpout = new FileOutputStream(outputfilename);

byte buffer = new byte[8192];

int length = 0;

while ((length = fpin.read(buffer, 0, buffer.length)) > 0)

{

fpout.write(buffer, 0, length);

}

fpout.flush();

fpout.close();

fpin.close();

}

catch (IOException x)

{

System.out.println("Error:" + x);

}

}

}

Byte oriented streams are attractive to programmers

familiar with C, C++ or who have UNIX experience

They are identical to what these programmers are used to

Because they are byte-oriented, they are inflexible when

dealing with multi-byte characters

Byte oriented streams only directly support ASCII

International fonts would require extra work for the programmer

Character based streams

Abstract classes are Reader and Writer

Can be used in conjunction with byte-oriented streams

Useful when reading and writing text (character data)

Readers and Writers support a wide variety of character encodings

Limitations of Byte Oriented Streams

There are many different types of Character-Oriented

Streams
Represented by different classes within the java.io.package

All character-oriented streams are subclasses of an abstract class

Writers are subclasses of the abstract class java.io.Writer

Readers are subclasses of the abstract class java.io.Reader

All character-oriented streams inherit basic methods from their respective

superclasses

Some define new methods pertinent to the type of data they provide.

Character oriented streams can be used in conjunction

with byte-oriented streams:
Use InputStreamReader to "convert" an InputStream to a Reader

Use OutputStreamWriter to "convert" an OutputStream to a Writer

Character-Oriented Streams

The following is the byte-oriented input stream class
hierarchy:

Character-Oriented Reader Classes

Reader

BufferedReader

CharArrayReader

FilterReader

PipedReader StringReader

InputStreamReader

LineNumberReader PushbackReader FileReader

Reading

read() methods will block until data is available to be read

two of the three read() methods return the number of bytes read

-1 is returned if the Stream has ended

throws IOException if an I/O error occurs. This is a checked exception

• There are 3 main read methods:

int read()

Reads a single character. Returns it as integer

int read(char[] buffer)

Reads bytes and places them into buffer (max = size of buffer)

returns the number of bytes read

Reader Methods

close() method closes the stream

mark(int readAheadLimit) marks the current location

Parameter specifies the number of characters which can be read before

the marks becomes invalid

ready() returns true if there is data to be read from the

stream

returns true if the stream is guaranteed not to block upon next read.

reset() returns the stream to its previously marked

location

skip(long n) skips over n bytes

Reader Methods

Reader is abstract. Programmers instantiate one of its

subclasses.

BufferedReader

Reads text from the character input stream

Provides buffering to provide efficient reading of characters, arrays and

lines

CharArrayReader

Similar to ByteArrayInputStream

Constructor takes a character array. The character array provides the

characters for the stream.

FilterReader

An abstract class for filtering character streams

Filtering will be discussed later in the chapter

Creating a Reader Object

InputStreamReader

This class acts as a bridge from byte streams to character streams

InputStreamReader takes an InputStream parameter to its constructor

The InputStreamReader reads bytes from the InputStream and translates

them into characters according to the specified encoding.

PipedReader

Similar to PipedInputStream

Connects to an Instance of PipedWriter

A pipe represents a one-way stream through which 2 threads may

communicate

Thread1 writes to a PipedWriter

Thread2 reads from the PipedReader

StringReader

Creating a Reader Object

LineNumberReader (subclass of BufferedReader)

A stream which keeps track of how many lines there have been

A line is terminated with a linefeed, carriage return or a carriage return

followed immediately by a linefeed.

PushbackReader (subclass of FilterReader)

A stream which allows characters to be pushed back into the stream after

being read

The number of characters which can be pushed back is specified when

instantiated. Default = 1

FileReader (subclass of InputStreamReader)

A convenience class to provide a character based stream from file.

Alternatively, open the file using a FileInputStream and then pass that

stream to an InputStreamReader instance.

Creating a Reader Object

The following is the byte-oriented input stream class
hierarchy:

Character-Oriented Writer Classes

Writer

BufferedWriter

CharArrayWriter

OutputStreamWriter

PipedWriter FileWriter

PrintWriter

FileWriter

StringWriter

There are 5 main write methods:

void write(int c)

Writes a single character.

void write(char[] buffer)

Writes an array of characters

void write(char[] buffer, int offset, int length)

Writes a portion of an array of characters

First character written is starts at buffer[offset]

length indicates how many characters to write.

void write(String aString)

Writes aString to the stream

Writer Methods

Writer is abstract. Programmers instantiate one of its

subclasses.

BufferedWriter

Writes text to the character stream

Provides buffering to provide efficient writing of characters, arrays and

lines

CharArrayWriter

Similar to ByteArrayOutputStream

Characters written to the stream are stored in a buffer.

The buffer can be retrieved by calling toCharArray() or toString()

FilterWriter

An abstract class for writing filtered character streams

Filtering will be discussed later in the chapter

Creating a Writer Object

OutputStreamWriter

This class acts as a bridge from character streams to byte streams

OutputStreamWriter takes an OutputStream parameter to its constructor

Characters written to the OutputStreamWriter are translated to bytes

(based on the encoding) and written to the underlying OuputStream.

PipedWriter

Similar to PipedOutputStream

Connects to an Instance of PipedReader

A pipe represents a one-way stream through which 2 threads may

communicate

Thread1 writes to a PipedWriter

Thread2 reads from the PipedReader

StringWriter

Creating a Writer Object

PrintWriter

Provides print() and println() methods for standard output

both print() and println() are overloaded to take a variety of types

When println is used, the stream will output the appropriate sequence

(either linefeed, carriage return or carriage return/linefeed) for the current

platform

System.out and System.err are PrintWriters

FileWriter (subclass of OutputStreamWriter)

A convenience class for writing characters to file

FileWriters assume that the default character encoding is acceptable

Alternatively, open the file using a FileOutputStream and then pass that

stream to an OutputStreamWriter instance.

Creating a Writer Object

What are filter streams?

Filter streams are similar to filters in Unix

The basic idea is that while the data is being read (or written) the data is

modified by a filter or series of filters.

How the data is modified is depends on which filters are used.

Filters can be chained together.

Example:

A programmer creates a FileOuputStream

OutputStreams are byte-oriented, but the programmer wishes to use

character-oriented streams instead.

The programmer knows that the OutputStreamWriter class can convert

between character oriented streams and byte oriented streams

The programmer creates an OuputStreamWriter and passes the

FileOutputStream reference to it

Filter Streams

Filter Streams - Example

import java.io.*;

public class MyClass

{

public void test()

{

try

{

FileOutputStream out = new FileOutputStream("Test");

OutpuStreamWriter oswOut = new OutputStreamWriter(out);

BufferedWriter bufOut = new BufferedWriter(oswOut);

// programmer now uses bufOut

}

catch (IOException x)

{

}

}

}

FileOutputStr

eam

OutputStream

Writer

BufferedWrite

r

Programmer

Writes

Data

File

named

"Test"Data Buffered in

BufferedWriter

Character Data converted

to byte data

Byte Data written to file

outoswOutbufOut

Remember FileWriter?

A convenience class for writing characters to file

FileWriters assume that the default character encoding and default buffer

size are acceptable

Alternatively, open the file using a FileOutputStream and then pass that

stream to an OutputStreamWriter instance.

FileWriter is a filter class.

When it is created, it constructs a FileOutputStream, an

OutputStreamWriter (with the default encoding) and a BufferedWriter with

the default buffer size.

It is a considered a convenience class because it goes through the

process of setting up the filter chain using default encoding and buffer

sizes.

If the default values are not acceptable, the programmer will have to set up

their own filters as outlined in the previous example.

FileWriter Revisited

Standard Byte-oriented Filter Streams:

ObjectInputStream, ObjectOutputStream

BufferedInputStream, BufferedOutputStream

DataInputStream, DataOutputStream

PushbackInputStream

Compression filter Streams

GZIPInputStream, GZIPOutputStream

ZipInputStream, ZipOutputStream

InflatorInputStream, DeflatorOutputStream

Character-oriented Filter Streams:

PushbackReader

FileWriter

FilterStreams Provided with the JSDK

When an object is instantiated, the system reserves

enough memory to hold all of the object's instance

variables

The space includes inherited instance variables.

The object exists in memory.

Instance methods read and update the memory for a given object.

The memory which represents an object can be written to

an ObjectOutputStream.

Objects are serialized to an ObjectOutputStream

Any other objects referred to by the Serialized object are

also serialized to the stream

Unless they are marked as "transient"

Object Serialization

Example - Serialize an Object

import java.io.*;

public class Test

{

public void saveObject(String outputFilename, Object anObject)

{

try

{

FileOutputStream fpout = new FileOutputStream(outputFilename);

ObjectOutputStream obOut = new ObjectOutputStream(fpout);

obOut.writeObject(anObject);

obOut.flush();

obOut.close();

}

catch (IOException x)

{

System.out.println("Error:" + x);

}

}

}

Example - Read in a Serialized Object

import java.io.*;

public class Test

{

public Object readObject(String inputFilename)

{

try

{

FileInputStream fpin = new FileInputStream(inputFilename);

ObjectInputStream obIn = new ObjectInputStream(fpin);

Object anObject = obIn.readObject();

obIn.close();

return anObject;

}

catch (IOException x)

{

System.out.println("Error:" + x);

}

}

}

Example - Serialize an Object and Compress

import java.io.*;

import java.util.zip.*;

public class Test

{

public void saveObject(String outputFilename, Object anObject)

{

try

{

FileOutputStream fpout = new FileOutputStream(outputFilename);

DeflaterOutputStream dOut = new DeflaterOutputStream(fpout);

ObjectOutputStream obOut = new ObjectOutputStream(dOut);

obOut.writeObject(anObject);

obOut.flush();

obOut.close();

}

catch (IOException x)

{

System.out.println("Error:" + x);

}

}

}

Example - Read in a Compressed Serialized Object

import java.io.*;

public class Test

{

public Object readObject(String inputFilename)

{

try

{

FileInputStream fpin = new FileInputStream(inputFilename);

InflaterInputStream inflateIn = new InflaterInputStream(fpin);

ObjectInputStream obIn = new ObjectInputStream(inflateIn);

Object anObject = obIn.readObject();

obIn.close();

return anObject;

}

catch (IOException x)

{

System.out.println("Error:" + x);

}

}

}

Java IO provides a class which is an abstract

representation of a file or directory within the file system.

The File class has 2 constructors:

File(String pathName)

File(File parent, String child)

The File class provides several query methods:

canRead(), canWrite(), exists(), getAbsolutePath(), getName(),

getParent(), getPath(), isAbsolute(), isDirectory(), isHidden(),

lastModified(), length(), and list()

The File class also provides several methods which act

on the file system:

createTempFile(), delete(), deleteOnExit(), mkdir(), mkdirs(), renameTo(),

setLastModified(), setReadOnly()

The File Class

