Model View Controller
(MVC)

Web Engineering
by Wasim Ahmad Khan

*In the MVC paradigm, the user input, the modeling
of the external world, and the visual feedback to
the user are explicitly separated and handled by
three types of objects, each specialized for its task.

* The view manaﬁes the graphical and/or textual output to

the portion of the bitmapped display that is allocated to
its application.

* The controller interprets the mouse and keyboard inputs
from the user, commanding the model and/or the view to
change as appropriate.

* The model manages the behavior and data of the
aBpIication domain, responds to requests for information
about its state (usually from the view), and responds to
instructions to change state (usually from the controller).

* Model-View-Controller ("MVC") is the
recommended architectural design pattern for
interactive applications

* MVC organizes an interactive application into three
separate modules:

* one for the application model with its data representation
and business logic,

* the second for views that provide data presentation and
user input, and

* the third for a controller to dispatch requests and control
flow.

* Most Web-tier application frameworks use some variation of the
MVC design pattern

* The MVC (architectual) design pattern provides a host of design
benefits

Java Server Pages

* Model 2 Architecture to serve dynamic content
* Model: Enterprise Beans with data in the DBMS

* JavaBean: a class that encapsulates objects and can be displayed graphically

* Controller: Servlets create beans, decide which JSP to return, do the
bulk of the processing

* View: The JSPs generated in the presentation layer (the browser)

OO-tips Says

* The MVC paradigm is a way of breaking an
application, or even just a piece of an application's
interface, into three parts: the model, the view, and
the controller.

* MVC was originally developed to map the
traditional input, processing, output roles into the
GUI realm:

* Input --> Processing --> Output
* Controller --> Model --> View

http://ootips.org/mvc-pattern.html

Wikipedia says

* Model-View-Controller (MVC) is a software
architecture that separates an application's data
model, user interface, and control logic into three
distinct components so that modifications to one
component can be made with minimal impact to
the others.

* MVC is often thought of as a software design
pattern. However, MVC encompasses more of the
architecture of an application than is typical for a
design pattern. Hence the term architectural
pattern may be useful (Buschmann, et al 1996), or
perhaps an aggregate design pattern.

http://en.wikipedia.org/wiki/Model_view_controller
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Data_model
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Control_logic
http://en.wikipedia.org/wiki/Component
http://en.wikipedia.org/wiki/Software_design_pattern
http://c2.com/cgi/wiki?ModelViewControllerAsAnAggregateDesignPattern

MVC Benefits

* Clarity of design
* easier to implement and maintain
* Modularity

* changes to one don't affect the others
» can develop in parallel once you have the interfaces

* Multiple views

* games, spreadsheets, powerpoint, Eclipse, UML reverse engineering,

Summary (MVC)

*The intent of MVC is to keep neatly separate objects
into one of tree categories
* Model
* The data, the business logic, rules, strategies, and so on
* View

* Displays the model and usually has components that allows user
to edit change the model

e Controller
e Allows data to flow between the view and the model
* The controller mediates between the view and model

Model

* The Model's responsibilities
* Provide access to the state of the system
* Provide access to the system's functionality
* Can notify the view(s) that its state has changed

10

View

* The view's responsibilities
* Display the state of the model to the user

* At some point, the model (a.k.a. the observable) must registers the
views (a.k.a. observers) so the model can notify the observers that its
state has changed

11

Controller

* The controller's responsibilities

* Accept user input
e Button clicks, key presses, mouse movements, slider bar changes

* Send messages to the model, which may in turn notify it observers
* Send appropriate messages to the view

* In Java, listeners are controllers

12

from http://www.enode.com/x/markup/tutorial/mvc.html)

Confroller

Event is possed
to the Controller

Controller changes
Model or View(s)

Views get daota
from Model

Model vpdates Views
when dalo changes 13

http://www.enode.com/x/markup/tutorial/mvc.html

Code Demo

* Whack a mole game adds 1 point every time you click a button (see
Code Demos page)
* All code in one file: WhackAMoleWithButton.java

e Customer wants to deduct a point each time the user misses the
mole (or Sponge Bob)

16-14

Activity

Model?

Random — =

View?

Controller?

Observable winterfacen JPanel
Observer
i B T
WhackAMele | T
-generator: Random]
-timer: java.swing.Timer ClickPanel
-score: int -img Bufferedimage
FvhackAMoIeY . 1| -model: WhackAMoleGame
+changelmagelocation() —_
. o -upperLeft: Point
+getLocation(): Point TClickPanel()
+userMissed() +upDate(Observable)
+userHit() - +paintComponent(Grpahics)
+getScore(): int class GameController extends
class Timerlistener implements ;-
'.*J Tttt i ;, RunWhackAMole
i)) N |-drawingPanel:
. wr A private inner class
) . +RunWhack AMole()
A private inner class
«interfaces
ActionListener w7
JFrame

-15

MVC Misunderstood

* MVC is understood by different people in different ways

* It is often misunderstood, but most software developers will say it is
important; powerful

* Lets start it right: MVC is a few patterns put together

16

Questions

* Do controllers have a user interface?

* Does a view allow user input?

e Can a view send messages to the model?

* Can a view send messages to the controller?

* Can you have more than one view?

e Can you more than one model?

e Can you more than one controller?

*|s a controller just one file? A View?, A Model?

* Should the view Ul be separate from the controller
interface?

17

