
Server-side Programming:

Java Servlets

Web Engineering

Instructor: Wasim Ahmad Khan

• Web server response can be static or
dynamic

– Static: When browser has requested an
HTML document

– HTML document is retrieved from the file
system and returned to the client

– Web server not responsible for generating
content of response

– Find and send the content

– Dynamic: HTML document is generated by a
program in response to an HTTP request

– Eg: Visiting a search engine website

• Java servlets are one technology for producing dynamic
server responses

• Servlet is a Java class instantiated by the server to
produce a dynamic response

• A particular method is called on this instance when server
receives HTTP request

• Code in the servlet method can obtain information about
the request and produce information to be included in the
response

• It is done by calling methods on parameter objects passed
to the method

• When the servlet returns control to the server , it creates a
response from the information dynamically generated by
servlet

Web Server--Servlet Interaction

Web server Operation

1. When an HTTP request is received by a servlet capable
server

1. It determines based on URL whether the request
handled by the servlet

2. Any URL in which the path component begins with
servlet

2. The servlet determines from URL which servlet handle the
request and calls a method on that servlet

– Two parameters are passed to the method

– An object implementing the HttpservletRequest
interface

– An object implementing the HttpservletResponse
interface

– Both are defined as part of Java Servlet API which is
implemented by server

– First method to access the information contained
in the request message

– Second object to record the information that the
servlet wishes to include in the HTTP response
message

3. Servlet method executes by calling methods on

HttpservletRequest and HttpservletResponse
objects passed to it.

– The information stored in the latter object by the
servlet method includes an HTML document
along with some HTTP header information

– When servlet method finishes its processing it
returns control to the server

4. The server formats the information stored in the
HttpservletResponse object by the servlet into an
HTTP response message then send to the client

A Hello World! Servlet

All servlets we will write

are subclasses of

HttpServlet

Java Servlet name: ServletHello

Responds with HTML document “Hello World!” in response

to HTTP GET Request

ServletHello.java

Hello World! Servlet

Server calls doGet() in response to GET request

Interfaces implemented by request/response objects

Hello World! Servlet

Production servlet should

catch these exceptions

A Production Servlet normally catch all exceptions internally rather than

throwing to the server

(Java Web Services Developer Pack)

• JWSDP Tomcat server exception handling:

– Writing a trace for the exception in

logs/jwsdp_log.*.txt log file

– Returning HTML page to client that may (or may

not) contain partial exception trace

• If servlet prints a stack trace itself by calling

printStackTrace(), or if it writes debugging output to

System.out or System.err, this output will be

appended to the file logs/launcher.server.log

• printStackTrace(), The trace prints exactly where

the program was at the moment the exception was

thrown

Body of a doGet() method action

• Set the HTTP content-type header of the response

– MIME Type portion of this header is text/html

– Also include the type of character encoding used

• Obtain PrinterWriter object from HttpservletResponse

object by calling getwriter() method

– It should not be called before the Content-Type is

set

– It is set by setContentType()

• Output a valid HTML document to the PrinterWriter

object

• Close the PrinterWriter object

Hello World! Servlet

First two

things done

by typical servlet;

must be in this

order

Hello World! Servlet

HTML generated by calling print() or

println() on the servlet’s

PrintWriter object

Good practice to explicitly close

the PrintWriter when done

Servlets vs. Java Applications

• Servlets do not have a main()

– The main() is in the server (doGet())

– Entry point to servlet code is via call to a
method (doGet() in the example)

• Servlet interaction with end user is indirect
via request/response object APIs

– Actual HTTP request/response processing is
handled by the server

• Primary servlet output is typically HTML

Running Servlets

• Simple way to run a servlet

1. Compile servlet

2. Copy .class file to shared/classes

directory

3. (Re)start the Tomcat web server

4. If the class is named ServletHello,

browse to

http://localhost:8080/servlet/ServletHello

MALE

Servlet Generating Dynamic Content

• The previous one produces static HTML File

• This prints Hello World and no of times the servlet has

been visited since the servlet was started

• Page is no longer static

 A counter variable visits will be incremented

Its value output as part of the HTML document

produced by the servlet

• Potential problems:

– Assuming one instance of servlet on one server, but

• Many Web sites are distributed over multiple servers

• Even a single server can (not default) create multiple

instances of a single servlet

• If multiple users access this servlet at nearly the same

time,the multiple execution of doGet() causes different

users to see the same visit count.

– Even if the assumption is correct, this servlet does not

handle concurrent accesses properly

Servlet Life Cycle

• The java servlet API provide initialization

tasks(opening files, establishing database connections)

• Servlet API life cycle methods

– init(): called when servlet is instantiated; must return

before any other methods will be called

• If intialization processing causes error it throw throw an

exception called UnavailableException

– service(): method called directly by server when an

HTTP request is received; this in turn calls doGet()

– destroy(): called when server shuts down(taking a

servlet out of service

• Servlet to terminate cleanly or closing any database

connection and opened files

Servlet Life Cycle
Example life cycle method: attempt to

initialize visits variable

from file

Servlet Life Cycle

Exception to be thrown if initialization fails

and servlet should not be instantiated

Parameter Data

•The request object (which implements HttpServletRequest) provides

information from the HTTP request to the servlet

•The most frequently used potion of the HTTP request called

Parameter Data of the request

Parameter Data and Query Strings

• When we navigate to a URL the server calls doGet() method of

servlet for us

•It returns a long string the return value of the method

•One type of information is parameter data, which is information

from the query string portion of the HTTP request

• Example

• ? End of the path portion of URL

and the beginning of query portion of URI

• Query portion of URL consist of a query string

• Query string contains one parameter called arg

assigned a string value astring

• All query string parameter treated as string and

they should not be quoted

• Parameter data is the Web analog of calling a

method in java

Query string with

one parameter

• Query string syntax and semantics

– Multiple parameters separated by &

– Order of parameters does not matter

– All parameter values are strings

– The empty string value assigned to a

parameter by either following the equals sign

after the parameter name with an ampersand

Value of arg is empty string

• A parameter name or value can be any sequence of 8-bit

characters

• If a name or value contains any non alphanumeric characters

then a transformation called URL encoding included in the

query string

• URL encoding is used to represent non-alphanumeric

characters:

• URL decoding applied by server to retrieve intended name or

value

• The above example to send the string ‘a string’ as the

parameter value

Value of arg is ‘a String’

• URL encoding algorithm

Servlet and Parameter data

• Query strings can be included in any URL even to a

static web page

• For static web page it will be ignored by web server

• The servlet obtain the query string as well as the

parameter data by using HttpServletRequest methods

Ex for accessing Parameter Data from a servlet

• body of doGet() method of ServletPrintThis creates a web page

displaying two paragraphs

• First containing the query string of the URL used to access the

servlet

•Second containing either the URL-decoded value of the arg

parameter, or the default text “Hello World!”

•Recall that the ampersand (&) and less-than (<) symbols are

not allowed to appear in the character data or attribute values

of an XHTML document

• The servlet performs this replacement by calling a static

method escapeXML(String) that belongs to a class

WebTechUtil.

•quote characters should be re-placed by references in a

string that will appear as part of the value of an attribute in

an XHTML document.

•The escapeQuotes() method of WebTechUtil performs this

task

Parameter Data
Must escape XML special characters in

all user-supplied data before adding to HTML

to avoid cross-site scripting attacks

Also need to escape quotes within

attribute values.

• Cross-site scripting

Attacker

Blogging Web

site

Comment containing

<script> element

Document containing

attacker’s comment (and script)Victim

Cross Site Scripting also known as XSS is a popular type of

Client Site Attack, It is a type of attack which occurs in Web-

Applications and allows an attacker to inject desired client-side

scripts into Web-Pages viewed by others.

• (CROSS-Site Scripting) Causing a user's Web

browser to execute a malicious(wicked) script. There

are several ways this is done. One approach is to hide

code in a "click here" hyperlink attached to a URL

that points to a non-existent Web page. When the

page is not found, the script is returned with the

bogus(false) URL, and the user's browser executes it.

• clicking these links the Victims Unknowingly

executes the injected code , Which in turn can

result in Cookie stealing , Privacy Disclosure etc.

Forms and Parameter Data

• A form automatically generates a query

string when submitted

– Parameter name specified by value of name

attributes of form controls

– Parameter value depends on control type

Value for checkbox

specified by value attribute

Parameter Data

•Example: LifeStory.html form

•a text field named username (that is, the value of its name attribute is

username)

•a textarea named lifestory

•Three checkboxes all named boxgroup1 and a submit button named

doit.

username

lifestory

boxgroup1 (values same as labels)
doit

• Query string produced by browser (all one

line):

Checkbox parameters have same name values; only

checked boxes have corresponding parameters

•Parameter boxgroup1 appears twice, because all of the checkboxes

have this name.

•The one control that does not appear in the query string is the

checkbox labeled “tall,” which was not checked.

• GET vs. POST for the method attribute of forms:

– GET:

• Query string is part of URL

• Length of query string may be limited

• Recommended when parameter data is not stored or

updated on the server, but used only to request information

(e.g., search engine query)

– The URL can be bookmarked or emailed and the same data will be

passed to the server when the URL is revisited

Method attribute of a form element

Ex GET Method

Browser content copyright 2004 Google, Inc. Used by permission.

• GET vs. POST method for forms:

– POST:

• Query string is sent as body of HTTP request

• Length of query string is unlimited

• Recommended if parameter data is intended to cause the

server to update stored data

• Most browsers will warn you if they are about to

resubmit POST data to avoid duplicate updates

Sessions

• Many web sites are designed to obtain information from

site visitors over a series of pages rather than in one large

page.

• Many interactive Web sites spread user data entry out

over several pages:

– Ex: add items to cart, enter shipping information, enter

billing information

• Problem: how does the server know which users

generated which HTTP requests?

– Cannot rely on standard HTTP headers to identify a

user

• A separate convention for passing User-identifying

information between browsers and servers has been

developed.

• Specifically, each HTTP request is examined by the server to

see if it contains a special identifier known as a session ID

• If a request does not contain a session ID, then the request is

assumed to be from a new user and the web server generates

a new unique session ID that is associated with this user.

• When the HTTP response message is created by the web

server, the session ID will be included as part of the

response.

• If the browser receiving this response supports the

session convention it will store the session ID

contained in the response and send it back to the

server as part of subsequent HTTP requests.

• when this convention successful, will allow a servlet

to recognize all of the HTTP requests coming from a

single user.

• Such a collection of HTTP requests, all associated

with a single session ID, is known as a session.

SessionsServer sends back

new unique session

ID when the request

has none

Client that supports

session stores the

ID and sends it

back to the server

in subsequent

requests

Sessions

Server knows

that all of these

requests are from

the same client.

The set of

requests

is known as a

session.

And the server

knows that all

of these

requests are

from a different

client.

•A server complying with the Java servlet API supports the session

concept by associating an HttpSession object with each session

maintained by the server.

•Each object stores the session ID for its session as well as other

session-related information

•An HttpSession object is created by the server when a servlet

calls the getSession() method on its HttpServletRequest parameter

and the associated HTTP request does not contain a valid session ID

•The getSession() method returns the newly created object in this

case.

Creating a Session

HttpSession object is created by server when a servlet calls

getSession() method on its HttpServletRequest parameter.

getSession() method returns HttpSession object associated

with this HTTP request.

• Creates new HttpSession object if no

valid session ID in HTTP request

• Otherwise, returns previously created

HttpSession object containing the session ID

Boolean indicating whether returned object was

newly created or already existed.

Incremented

once per session

Modifies the earlier HelloCounter servlet

Display number of visitors to the page, rather than the number of

visits

The difference is that in the original servlet a single user could visit

the page multiple times, and each page visit would increment the

visit count.

In the new version, this will not happen .

This is because the visit counter is now only incremented on the first

visit by a user to the page, which can be detected by checking to see

whether or not a new session has begun.

Specifically, if the session is not new, then the user has visited the

page before, and the counter is not incremented.

Three web

pages produced

by a single servlet

Storing and Retrieving Attributes

The Java servlet session facility can be used to associate multiple

web pages with a single user

Client-server interaction

producing this sequence of pages

Example Greeting Servlet

,,, Session attribute is a

name/value pair

•This servlet is implemented by storing and retrieving an

attribute value in the HttpSession object for the user.

•A session attribute is simply a name-value pair that is stored in

the HttpSession object.

•Two methods of HttpSession are used to store and retrieve

attributes:

•setAttribute(String name, Object obj)

•getAttribute(String name)

Sessions

,,,

Session attribute will

have null value until

a value is assigned

Sessions

,,,

Generate

sign-in form

if session is

new or

signIn

attribute has no value,

generate weclome-back page

otherwise.

Sessions

Sign-in form

Welcome-back

page

Sessions

Second argument

(“Greeting”) used as

action attribute value

(relative URL)

Sessions

Form will be sent using POST HTTP

Method, so doPost() method will be called

Sessions

Text field containing

user name is named

signIn

Sessions

…

Retrieve

signIn

parameter value

Normal

processing:

signIn

parameter

is present in

HTTP request

Generate

HTML for

response

Sessions

Thank-you page Must escape

XML special

characters in

user input

Sessions

…

Assign a

value to the

signIn session

attribute

Session Termination

• By default, each session expires if a server-
determined length of time elapses between a
session’s HTTP requests

– Server destroys the corresponding session object

• Servlet code can:

– Terminate a session by calling invalidate() method
on session object(to terminate a runnong session)

– Set the expiration time-out duration (secs) by
calling setMaxInactiveInterval(int)

The primary mechanism used to implement the session

concept—so-called cookie processing

• A cookie is a name-value pair that a web server

sends to a client machine as part of an HTTP

response, specifically through the Set-Cookie

header field.

• Browsers will typically store the cookie pairs

found in the response in a file on the client

machine.

• Then, before sending a request to a web server,

the browser will check to see if it has stored any

cookies received from this server.

• If so, the browser will include these cookies in

the Cookie header field of its HTTP request.

Cookies

• The cookie mechanism is a natural means of

implementing the session concept automatically as part of

the processing performed by the getSession() method.

• Specifically, if a server uses cookies to maintain a

session, then a call to getSession() will cause the server to

look for a cookie named JSESSIONID in the Cookie

header field of the request.

• If a JSESSIONID cookie is found, its value is used to

search the server’s list of valid session objects for an

object with the same session ID.

• If found, a reference to this object is returned as the

value of the getSession() call.

• Otherwise, if no JSESSIONID cookie is found or if

the cookie value does not match the session ID of any

valid session object, a new session object is created.

• A JSESSIONID cookie having the session ID of this

new object as its value is then created, and this cookie

is added to the Set-Cookie header field of the HTTP

response.

• The new session object is then returned to the servlet.

• Servlets can also explicitly create and use cookies.

• The Java servlet API provides a class called Cookie

• Each instance of this class corresponds to a single cookie.

• This class can be used to create internal representations of

new cookies and to access the name-value data in existing

Cookie objects

• Two other methods are used to transfer the information

between this internal representation and the representation of

a cookie in an HTTP header:

• getCookies() method on the HttpServletRequest parameter

returns an array of Cookie objects corresponding to the

cookies sent by a browser in the HTTP request.

• addCookie(Cookie cookie) method on the

HttpServletResponse parameter tells the server to add the

information in the given cookie to the Set-Cookie header

field when the server later sends its HTTP response to the

client.

• Cookies, like sessions, can expire, but the expiration is

performed by the client, not the server. (server can request

• expiration date)

• A browser will not send an expired cookie in subsequent

HTTP requests.

Cookies

Tomcat sends session

ID as value of cookie

named JSESSIONID

Cookies

Cookie-enabled

browser returns

session ID as value

of cookie named

JSESSIONID

Visit counter theme

Return array of cookies

contained in HTTP request

Search for

cookie

named

COUNT and

extract value

as an int

Cookies

Send

replacement

cookie value

to client

(overwrites

existing cookie)

Should call

addCookie()

before writing

HTML

Cookies

Privacy issues

Client

Web site

providing

requested

content

HTTP request to

intended site

HTTP response:

HTML document

including ad

Web site

providing

banner

ads

HTTP request for

ad image

Image

plus Set-Cookie

in response:

third-party cookie

Web site

providing

requested

content

Cookies

Privacy issues

Client

Second

Web site

providing

requested

content

HTTP request to 2nd

intended site

HTTP response:

HTML document

including ad

Web site

providing

banner

ads

HTTP request for

ad image plus Cookie (identifies user)

Image Based on

Referer, I know two

Web sites that

this user has

visited

Cookies Sessions

Cookies are client-side files that

contain user information.

Sessions are server-side files

that contain user information

cookies are stored in the user's

browser

sessions are not

A cookie can keep information in the

user's browser until deleted.

Sessions is that when you

close your browser you also

lose the session.

If you set the variable to "cookies",

then your users will not have to log

in each time they enter your

community.

If you set the variable to

"sessions", then user activity

will be tracked using browser

sessions, and your users will

have to log in each time they

re-open their browser.

Cookies can only store strings. Store our objects in sessions.

save cookie for future reference Session couldn’t. Users close

their browser, they also lost

the session.

Cookies

Privacy issues

• Users can remove their cookies.

• In Mozilla 1.4, for example, cookie removal can be

performed by selecting Tools| Cookie Manager|

Manage Stored Cookies.

• A user can also choose to block (refuse to accept)

cookies from particular web sites, or to block cookies

entirely.

• Alternative to cookies for maintaining session: URL

rewriting

URL Rewriting

• Passing a session ID between server and client

through HTTP headers is to pass it via the

HTML documents themselves.

• the server to write the session ID within every

HTML document it returns to the client

• Involves rewriting every URL referencing the

servlet in the href attribute of any anchor and the

action attribute of any form output by the servlet.

• Whenever the server receives an HTTP request,

it must check the URL it receives for session ID

information and, if found, use the session ID just

as it would if it had been passed to the server via

a cookie.

• HttpServletResponse interface supports this approach to

maintaining session by defining an encodeURL(String url)

method.

• Given a url argument, this method returns the same URL plus,

if appropriate, a session ID

• The session ID is added via a little-used URL feature known

as a path parameter.

• path parameter is added to a URL by appending a semicolon

to the URL followed by a name-value pair

• The server checks for the presence of session information

within the request URL when getSession() is called

• If a JSESSIONID cookie is not found, the server will

check for a jsessionid path parameter in the request

URL.

• If this is found, the server records that this session

must be maintained using URL rewriting.

• It then continues with its session processing, using

the session ID contained in the path parameter just

as it would if the ID had come from a cookie.

• boolean HttpServletRequest methods

isRequestedSessionIdFromCookie() and

isRequestedSessionIdFromURL() can be called by

the servlet code to determine how the session ID

was transmitted in the current HTTP request.

URL Rewriting

Tomcat adds

session ID within

HTML document

to all URL’s

referring to the

servlet Session ID = 4235

Subsequent

request will contain

session ID in the

URL of the request

URL Rewriting

Next response must

again add session ID

to all URL’s Session ID = 4235

URL Rewriting

• Original (relative) URL:

href=“URLEncodedGreeting”

• URL containing session ID:

href=“URLEncodedGreeting;jsessionid=0157B9E85”

• Path parameter is treated differently than

query string parameter

– Ex: invisible to getParameter()

Path parameter

URL Rewriting

• HttpServletResponse method

encodeURL() will add session id path

parameter to argument URL

Relative URL of servlet

Original

servlet

Servlet

using URL

rewriting

Other Servlet Capabilities

HttpServletRequest methods

Dr. Thomas Tran – CSI3140 Lecture Notes (based on Dr. Jeffrey Jackson’s slides)

More Servlet Methods

HttpServletResponse methods

More Servlet Methods

• Response buffer

– All data sent to the PrintWriter object is
stored in a buffer

– When the buffer is full, it is automatically
flushed:
• Contents are sent to the client (preceded by

header fields, if this is the first flush)

• Buffer becomes empty

– Note that all header fields must be defined
before the first buffer flush

More Servlet Methods

Other Http methods

• In addition to doGet() and doPost(),

servlets have methods corresponding to

other HTTP request methods

– doHead(): automatically defined if doGet()

is overridden

– doOptions(), doTrace(): useful default

methods provided

– doDelete(), doPut(): override to support

these methods

Data Storage

• Almost all web applications (servlets or related

dynamic web server software) store and retrieve

data

– Typical web app uses a data base management

system (DBMS)

– Another option is to use the file system

– Not web technologies, so beyond our scope

• Some Java data storage details provided in

Appendices B (file system) and C (DBMS)

• One common problem: concurrency

Servlets and Concurrency

Concurrency

• Tomcat creates a separate thread for each

HTTP request

• Java thread state saved:

– Which statement to be executed next

– The call stack: where the current method will

return to, where that method will return to, etc.

plus parameter values for each method

– The values of local variables for all methods

on the call stack

Concurrency

• Some examples of values that are not

saved when a thread is suspended:

– Values of instance variables (variables

declared outside of methods)

– Values of class variables (variables declared

as static outside of methods)

– Contents of files and other external resources

Concurrency

// Output HTML document

Concurrency

Concurrency

• Java support thread synchronization

– Only one synchronized method within a class

can be called at any one time

Only one thread at

at time can call doGet()

Concurrency

Concurrency

• Web application with multiple servlet

classes and shared resource:

Concurrency

• Solution: create a shared class with

synchronized static methods called by

both servlets

CounterFileCounterReader CounterWriter
readAndReset() incr()

File

Common Gateway Interface

• CGI was the earliest standard technology

used for dynamic server-side content

• CGI basics:

– HTTP request information is stored in

environment variables (e.g.,

QUERY_STRING, REQUEST_METHOD,

HTTP_USER_AGENT)

– Program is executed, output is returned in

HTTP response

Common Gateway Interface

• Advantage:

– Program can be written in any programming

language (Perl frequently used)

• Disadvantages:

– No standard for concepts such as session

– May be slower (programs normally run in

separate processes, not server process)

