
1

Object Serialization Explanation +
Example of file + network

2

Serialization

You want to send an object to a stream
Motivation

A lot of code involves boring conversion from a file to
memory

AddressBook program reads data from file and then parses it to
construct objects

This is a common problem!
ali, defence, 9201342
usman, gulberg, 5162346

address.txt

3

Serialization

Java’s answer:

Serialization
Object know how to read/write themselves to streams

Problem - Objects have state in memory

Serialization is also called
Flattening, Streaming, Dehydrate (rehydrate = read),
Archiving

4

Java: Automatic Serialization
Serializable Interface

By implementing this interface a class declares that it is willing to be
read/written by automatic serialization machinery
Found in java.io package
Tagging interface – has no methods and serves only to identify the
semantics of being serializable

Automatic Writing
System knows how to recursively write out the state of an object to stream
Recursively follows references and writes out those objects too!

Automatic Reading
s

System knows how to read the data from Stream and re-create object in
memory
Downcasting is required

5

How it works?
To write out an object of PersonInfo

PersonInfo p = new PersonInfo();
ObjectOutputStream out;
out.writeObject(p)

To read that object back in
ObjectInputStream in;
PersonInfo obj = (PersonInfo) in.readObject();

Must be of the same type
class and version issue

Example Code: Serialization
Reading/Writing PersonInfo objects

2

7

Example Code: Serialization
import javax.swing.*;
import java.io.*;

public class PersonInfo implements Serializable{

String name;
String address;
String phoneNum;

public void printPersonInfo(){

JOptionPane.showMessageDialog(“name: ” + name + “address:” + address +
“phoneNum: ” + phoneNum);

}

}

8

Example Code: Serialization (cont.)
import java.io*;
public class WriteEx{

public static void main(String args[]){

PersonInfo pWrite = new PersonInfo("ali", "defence", "9201211");

try {

FileOutputStream fos = new FileOutputStream("ali.dat");
ObjectOutputStream out = new ObjectOutputStream(fos);

//serialization
out.writeObject(pWrite);

out.close();
fos.close();

} catch (Exception ex){
System.out.println(ex)

}
}

9

Example Code: Serialization (cont.)
import java.io*;
public class ReadEx{

public static void main(String args[]){

try {

FileInputStream fis = new FileInputStream("ali.dat");
ObjectInputStream in = new ObjectInputStream(fis);

//de - serialization
PersonInfo pRead = (PersonInfo) in.readObject();

pRead.printPersonInfo();

in.close();
fis.close();

} catch (Exception ex){
System.out.println(ex)

}
}

10

Object Serialization and Network

You can read/write objects to network using sockets

The class version should be same on both sides (client
& Server) of the network

11

Sending Objects over Network

…………..

PersonInfo p = new PersonInfo (“ali”, “defence”, “9201211”);

Socket s = new Socket(“localhost”, 4444);
OutputStream os = s.getOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(os);

oos.write(p);
…………

12

Reading Objects from Network

…………..

Socket s = ss.accept();
InputStream in = s.getInputStream();
ObjectInputStream ois = new ObjectInputStream(is);

PersonInfo p = (PersonInfo) ois.read();
…………

3

13

Preventing Serailization
transient keyword is used to mark a field that should not be
serialized

Often there is no need to serialize sockets, streams & DB
connections etc (they do not represent the state of object, rather
connections to external resources)

So, we can mark them as
public transient Socket s;
public transient OutputStream os;
public transient Connection con;

Transient fields are returned as null on reading

14

Example Code: transient
import javax.swing.*;
import java.io.*;

public class PersonInfo implements Serializable{

String name;
String address;

transient String phoneNum;

public void printPersonInfo(){

JOptionPane.showMessageDialog(“name: ” + name + “address:” + address +
“phoneNum: ” + phoneNum);

}

}

15

Circularity: not an issue

Serialization machinery will take circular references
into account and do the right thing!

