
1

Multithreading

2

Threads

The ability to do multiple things at once within the same
application

Finer granularity of concurrency

Lightweight
Easy to create and destroy

Shared address space
Can share memory variables directly
May require more complex synchronization logic because of
shared address space

Three Loops
Sequential Execution

4

Example Code: ThreeLoopTest
public class ThreeLoopTest {

public static void main (String args[]){

// first loop
for (int i=1; i<= 5; i++)

System.out.println(“first ” +i);

// second loop
for (int j=1; j<= 5; j++)

System.out.println(“second ” + j);

// third loop
for (int k=1; k<= 5; k++)

System.out.println(“third ” + k);

}
}

5

Compile & Execute: ThreeLoopTest

6

Multi-Threaded Output

2

7

Java Threads
Java includes built-in support for threading!

Other languages have threads bolted-on to an existing structure

VM transparently maps threads in Java to OS threads
Allows threads in Java to take advantage of hardware and operating system
level advancements
Keeps track of threads and schedules them to get CPU time
Scheduling may be pre-emptive or cooperative

8

Creating Threads in Java

Two approaches
Using Interface

Implement the runnable interface in a class
Provide an implementation for the run() method
Instantiate Thread object by passing runnable object in constructor
Start thread

Using Inheritance
Subclass java.lang.Thread
Override the run() method
Instantiate Subclass Thread Object
Start thread

9

Thread Creation Steps : using Interface
Step 1 - Implement the Runnable Interface

class Worker implements Runnable

Step 2 - Provide an Implementation of run method

public void run (){
// write thread behavior
// code that will execute by thread

}

Step 3 - Instantiate Thread object by passing runnable object in constructor

Worker w = new Worker(“first”);
Thread t = new Thread (w);

Step 4 – Start thread
t.start()

Three Loops
Multi-Threaded Execution

11

Example Code: using Interface
public class Worker implements Runnable {

private String job ;

public Worker (String j){

job = j;

}

public void run () {

for(int i=1; i<= 10; i++)

System.out.println(job + " = " + i);
}

}
12

Example Code: using Interface
public class ThreadTest{

public static void main (String args[]){

Worker first = new Worker (“first job”);
Worker second = new Worker (“second job”);
Worker third = new Worker (“third job”)

Thread t1 = new Thread (first);
Thread t2 = new Thread (second);
Thread t3 = new Thread (third);

t1.start();
t2.start();
t3.start();

}
}

3

13

Thread Priorities
Every Thread has a priority

Threads with higher priority are executed in preference
to threads with lower priority

A thread’s default priority is same as of the creating
thread

14

Thread Priorities

You can change thread priority by using any of the 3
predefined constants

Thread.MAX_PRIORITY (typically 10)

Thread.NORM_PRIORITY (typically 5)

Thread.MIN_PRIORITY (typically 1)

OR any integer value between 1 to 10 can be used as
thread priority.

15

Useful Thread Methods

setPriority(int priority)

Changes the priority of this thread

Throws IllegalArgumentException if the priority is not in the range
MIN_PRIORITY to MAX_PRIORITY

For Example,

Thread t = new Thread(RunnableObject);
t.SetPriority(Thread.MAX_PRIORITY);
t.setPriority(7);

16

Thread priority scheduling example

Priority 9

Priority 8

Priority 7

Priority 10

Priority 6

Priority 5

Priority 4

Priority 3

Priority 2

Priority 1

A B

D

C

E F

G

H I

J K

Ready threads

Thread.MIN_PRIORITY

Thread.MAX_PRIORITY

Thread.NORM_PRIORITY

17

Code Example: PriorityEx.java
public class PriorityEx{

public static void main (String args[]){

Worker first = new Worker (“first job”);
Worker second = new Worker (“second job”);

Thread t1 = new Thread (first);
Thread t2 = new Thread (second);

t1.setPriority(Thread.MIN_PRIORITY);
t2.setPriority(Thread. MAX_PRIORITY);

t1.start();
t2.start();

}
}

18

Output: PriorityEx.java

19

Thread Priorities
Problems

A Java thread priority may map differently to the thread
priorities of the underlying OS

Solaris has 232–1 priority levels;

Windows NT has only 7 user priority levels

Starvation can occur for lower-priority threads if the higher-
priority threads never terminate, sleep, or wait for I/O

25-Oct-05

Lab Work - Reading Two Files
Simultaneously

21

Useful Thread Methods (cont.)
sleep (int time)

Causes the currently executing thread to wait for the
time (milliseconds) specified

Waiting is efficient (non-busy)

Threads come out of the sleep when the specified time
interval expires or when interrupted by some other
thread

Thread coming out of sleep may go to the running or
ready state depending upon the availability of the
processor.

22

Useful Thread Methods (cont.)
sleep (int time)

High priority threads should execute sleep method after
some time to give low priority threads a chance to run
otherwise starvation may occur

Sleep can be used for delay purpose
i.e., anyone can call Thread.sleep

Note that sleep throws InterruptedException. Need try/catch

23

Code Example: Modify Worker.java
public class Worker implements Runnable {

………….
public void run () {

for(int i=1; i<= 10; i++) {
try {

Thread.sleep(100);
}catch (Exception ex){

System.out.println(ex);
}
System.out.println(job + " = " + i);

} // end for
} // end run

}// end Worker

24

Code Example: SleepEx.java
public class SleepEx{

public static void main (String args[]){

Worker first = new Worker (“first job”);
Worker second = new Worker (“second job”);

Thread t1 = new Thread (first);
Thread t2 = new Thread (second);

t1.start();
t2.start();

}
}

5

25

Output: SleepEx.java

26

Useful Thread Methods (cont.)
yield ()

Allows any other threads of the same priority to execute
(moves itself to the end of the priority queue)

If all waiting threads have a lower priority, then the
yielding thread resumes execution on the CPU

Generally used in cooperative scheduling schemes

27

Code Example: Modify Worker.java
public class Worker implements Runnable {

………….

public void run () {

for(int i=1; i<= 10; i++) {
Thread.yield();

System.out.println(job + " = " + i);

} // end for
} // end run

}// end Worker
28

Code Example: YieldEx.java
public class YieldEx{

public static void main (String args[]){

Worker first = new Worker (“first job”);
Worker second = new Worker (“second job”);

Thread t1 = new Thread (first);
Thread t2 = new Thread (second);

t1.start();
t2.start();

}
}

29

Output: YieldEx.java

30

Thread States: Life Cycle of a Thread

Thread states
Born state

Thread was just created

Ready state
Thread’s start method invoked
Thread can now execute

Running state
Thread is assigned a processor and running

Dead state
Thread has completed or exited
Eventually disposed of by system

6

31

Thread life-cycle statechart diagram

Ready

Running

BlockedSleepingWaiting

start

issue I/O

request
wa
it

n
o
t
i
f
y

n
o
t
i
f
y
A
l
l

tim
eo

ut
 e

xp
ire

s
i
n
t
e
r
r
u
p
t

thread dispatch
(assign a
processor)

quantum expiration
yield

s
le
e
p

com
plete

sleep interval
expires

interrupt

Born

enter synchronized

statement

I/O
 com

pletes
acquire lock
i
n
t
e
r
r
u
p
t

When a thread completes
(returns from its run method),
it reaches the Dead state
(shown here as the final state)

32

Thread Lifecycle

new

ready

running

waiting

blocked

sleeping

start()

sleep()

Block on I/O

wait()

I/O completed

deadrun completes

yield()

times expires
or interrupted

notify()

dispatch

33

Joining

Used when a thread wants to wait for another thread to
complete its run()

Sent the thread2.join() message
Causes the current running thread to block efficiently until thread2
finishes its run() method
Must catch InterruptedException

34

Code Example: Modify Worker.java

public class Worker implements Runnable {

………….

public void run () {

for(int i=1; i<= 10; i++)

System.out.println(job + " = " + i);

}

}// end Worker

35

Code Example: JoinEx.java
public class JoinEx{

public static void main (String args[]){

Worker first = new Worker (“first job”);
Worker second = new Worker (“second job”);

Thread t1 = new Thread (first);
Thread t2 = new Thread (second);

System.out.println("Starting...");
t1.start();
t2.start();

…….
36

Code Example: JoinEx.java (cont.)

// The current running thread (main() blocks until both workers have finished

try {
t1.join();
t2.join();

}
catch (Exception ex) {

System.out.println(ex);
}

System.out.println("All done ");

}
}

7

37

Output: JoinEx.java

Synchronization

39

Thread’s Problems

Multiple threads can share variables among themselves.

This sharing of variables/memory can cause
synchronization problems which you must have studied
in your OS course.

The area where shared memory locations are modified
are know as a critical section and only one thread should
able to enter the critical section at any given point in
time.

40

Threading

Two Threading Challenges
Mutual Exclusion

Keeping the threads from interfering with each other
Worry about memory shared by multiple threads

Cooperation
Get threads to cooperate

Typically centers on handing information from one thread to the
other, or signaling one thread that the other thread has finished
doing something

Done using join/wait/notify

41

Critical Section
A section of code that may cause problems if two or
more threads are executing it at the same time

Typically as a result of shared memory that both thread may
be reading or writing

Race Condition
When two or more threads enter a critical section, they are
supposed to be in a race condition because the result often
depends upon the order of execution

Both threads want to execute the code at the same time, but if they do
then bad things will happen

42

Race Condition Example
class Pair {

private int a, b;

public Pair() {
a = 0;
b = 0;

}
// Returns the sum of a and b. (reader)
public int sum() {

return(a+b);
}
// Increments both a and b. (writer)
public void inc() {

a++;
b++;

}
}

8

43

Reader/Writer Conflict
Case

thread1 runs inc(), while thread2 runs sum()
thread2 could get an incorrect value if inc() is half way done
This happens because the lines of sum() and inc() interleave

Note
Even a++ and b++ are not atomic statements

Therefore, interleaving can happen at a scale finer than a single statement!
a++ is really three steps: read a, increment a, write a

Java guarantees 4-byte reads and writes will be atomic
This is only a problem if the two threads are touching the same object and
therefore the same piece of memory!

44

Reader/Writer Conflict

Case
thread1 runs inc() while thread2 runs inc() on the same object

The two inc()’s can interleave in order to leave the object in an
inconsistent state

Again
a++ is not atomic and can interleave with another a++ to
produce the wrong result
This is true in most languages

45

Heisenbugs
Random Interleave – hard to observe

Race conditions depend on having two or more threads “interleaving” their
execution in just the right way to exhibit the bug

Happens rarely and randomly, but it happens
Interleaves are random

Depending on system load and number of processors
More likely to observe issue on multi-processor systems

Tracking down concurrency bugs can be hard
Reproducing a concurrency bug reliable is itself often hard
Need to study the patterns and use theory in order to pre-emptively address
the issue

46

Java Locks
Java includes built- in support for dealing with
concurrency issues

Includes keywords in order to mark critical sections
Includes object locks in order to limit access to a single thread
when necessary

Java designed to encourage use of threading and
concurrency

Provides the tools needed in order to minimize concurrency
pitfalls

47

Object Lock and Synchronized keyword

Every Java Object has as lock associated with it
A “synchronized” keyword respects the lock of the receiver
object

For a thread to execute a synchronized method against a receiver, it must
first obtain the lock of the receiver
The lock is released when the method exits
If the lock is held by another thread, the calling thread blocks (efficiently)
till the other thread exits and the lock is available
Multiple threads therefore take turns on who can execute against the
receiver

48

Receiver Lock

The lock is in the receiver object
Provides mutual exclusion mechanism for multiple threads
sending messages to that object
Other objects have their own lock

If a method is not synchronized
The thread will not acquire the lock before executing the
method

9

49

Sychronized Method Picture

synch a() {
 --
 --
}

ivar

ivar

thread run {
 --
 --
}

synchronized method --
acquire object lock

release object lock

thread run {
 --
 --
}

block, waiting for
object lock

object lock

50

Synchronized Method Example
/*
A simple class that demonstrates using the 'synchronized'
keyword so that multiple threads may send it messages.
The class stores two ints, a and b; sum() returns
their sum, and inc() increments both numbers.

<p>
The sum() and incr() methods are "critical sections" --
they compute the wrong thing if run by multiple threads
at the same time. The sum() and inc() methods are declared
"synchronized" -- they respect the lock in the receiver object.

*/
class Pair {

private int a, b;

public Pair() {
a = 0;
b = 0;

}

51

Synchronized Method Example
// Returns the sum of a and b. (reader)
// Should always return an even number.
public synchronized int sum() {

return(a+b);
}
// Increments both a and b. (writer)
public synchronized void inc() {

a++;
b++;

}
}

52

Synchronized Method Example
/*
A simple worker subclass of Thread.
In its run(), sends 1000 inc() messages
to its Pair object.

*/
class PairWorker extends Thread {

public final int COUNT = 1000;
private Pair pair;
// Ctor takes a pointer to the pair we use
public PairWorker(Pair pair) {

this.pair = pair;
}
// Send many inc() messages to our pair
public void run() {

for (int i=0; i<COUNT; i++) {
pair.inc();

}
}

53

Synchronized Method Example
/*
Test main -- Create a Pair and 3 workers.
Start the 3 workers -- they do their run() --
and wait for the workers to finish.
*/
public static void main(String args[]) {

Pair pair = new Pair();
PairWorker w1 = new PairWorker(pair);
PairWorker w2 = new PairWorker(pair);
PairWorker w3 = new PairWorker(pair);
w1.start();
w2.start();
w3.start();
// the 3 workers are running
// all sending messages to the same object

54

Synchronized Method Example
// we block until the workers complete
try {

w1.join();
w2.join();
w3.join();

}
catch (InterruptedException ignored) {}

System.out.println("Final sum:" + pair.sum()); // should be 6000
/*
If sum()/inc() were not synchronized, the result would
be 6000 in some cases, and other times random values
like 5979 due to the writer/writer conflicts of multiple
threads trying to execute inc() on an object at the same time.

*/
}

}

10

Producer/Consumer Relationship

56

Producer/Consumer Relationship
Consider a Producer/Consumer relationship in which a producer
thread deposits a sequence of numbers into a slot of shared
memory

The consumer thread reads this data from the shared memory and
prints that data.

Problems
If the threads are not synchronized, data can be lost if the producer places
new data into the shared slot before the consumer consumes the previous
data

Data can be doubled if the consumer consumes the data again before the
producer produces the next item.

Example Code

Producer/Consumer Relationship

58

Useful Object Methods
wait()

Causes the current running thread to enters a waiting state for the particular
object on which wait() was called

notify() / notifyAll()
One thread in the waiting state for a particular object becomes ready on a
call to notify() issued by another thread associated with that object.
If a thread calls notifyAll(), then all threads waiting for the object are
placed in the ready state.

Every call to wait() must have a corresponding call to notify() or
call notifyAll() as a safeguard.

Multithreaded Server

Lab Exercise

60

An idiom explained even more!
Remember:

public static void main(String[] args)

Well…
When you run a Java program, the VM creates a new thread
and then sends the main(String[] args) message to the class to
be run!
Therefore, there is ALWAYS at least one running thread in
existence!

We can create more threads which can run concurrently

